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ABSTRACT
This paper introduces a bi-modal typing interface, HGaze Typing,
which combines the simplicity of head gestures with the speed of
gaze inputs to provide efficient and comfortable dwell-free text
entry. HGaze Typing uses gaze path information to compute can-
didate words and allows explicit activation of common text entry
commands, such as selection, deletion, and revision, by using head
gestures (nodding, shaking, and tilting). By adding a head-based
input channel, HGaze Typing reduces the size of the screen regions
for cancel/deletion buttons and the word candidate list, which are
required by most eye-typing interfaces. A user study finds HGaze
Typing outperforms a dwell-time-based keyboard in efficacy and
user satisfaction. The results demonstrate that the proposed method
of integrating gaze and head-movement inputs can serve as an effec-
tive interface for text entry and is robust to unintended selections.
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1 INTRODUCTION
People with motor impairments use various assistive technologies
to access and interact with computers. Among them, eye-tracking
and head-tracking systems involve muscles that are unaffected in
most conditions and therefore can be used by people with different
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levels of motor impairments. Gaze-based systems place the mouse
pointer directly at the user’s point of gaze on the screen [Majaranta
et al. 2009]. Head-movement-based systems map the initial position
of a facial feature, such as nose, mouth, or a reflective dot attached to
the user’s head, to the mouse pointer [Betke et al. 2002]. Both types
of systems follow the movements of the selected feature (gaze or
facial features) to assist individuals in moving a cursor and writing
text.

Eye-tracking and head-tracking systems can cause unintended
selections, also known as the Midas Touch problem [Jacob 1990].
To address this issue, many gaze and head-based input interfaces
use selection by dwell-time, i.e., to select a button or a key on a
virtual keyboard the user has to maintain the cursor within the key
region for a given period of time. However, this method is slow
because the dwell period needs to be sufficiently long to prevent
unintentional selections. Additionally, people with motor impair-
ments may find dwell-time selection challenging if they experience
spasm symptoms in their eye or neck muscles, causing them to have
difficulty in holding the mouse cursor still. Recent studies [Kristens-
son and Vertanen 2012; Kurauchi et al. 2016] found that text entry
by eye-swiping can be faster and more natural than traditional
dwell-time-based eye typing.

The combination of gaze and head movements provides new
opportunities for efficient and accurate multimodal interaction. In
gaze-based systems, user saccades allow to quickly point to tar-
gets. However, unconscious small eye movements along with eye-
tracking-system errors make the corresponding input data noisy,
which is problematic for fine pointing tasks. Previous work [Ku-
rauchi et al. 2015; Kytö et al. 2018; Špakov et al. 2014] has shown
that adding accurate and stable head movements to gaze-based sys-
tems allows faster and more precise target pointing and selection.
How to integrate head and gaze inputs for text entry, however, is
still under explored.

We propose HGaze Typing, a novel dwell-free text entry system
that combines gaze paths with head gestures. The main contribu-
tions of this system are: (1) HGaze Typing takes advantage of the
speed of eye saccades and the accuracy of head movements by asso-
ciating most common text entry tasks (e.g., selection and deletion)
with simple head gestures, and letter-by-letter word path genera-
tion with gaze input; (2) The system reduces the screen region size
used for the cancel/deletion button and the word candidate list; (3)
HGaze Typing effectively integrates head and gaze inputs so that
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the two modes do not interfere with each other; (4) This bi-modal
system enables a wider set of interactions than would be possible
with either mode alone.

2 RELATEDWORK
In this section, we summarize gaze-based and head-based text entry
methods, and discuss methods of combining gaze and head inputs.

2.1 Gaze-based Text Entry
We categorize gaze-based text entry interfaces based on two fea-
tures. The first feature considers the input element such as a letter,
a word, or a text of any length, and the second considers three
interaction modes: dwell-time, gesture, and continuous writing
interfaces.

2.1.1 Dwell-time-based interface. Many gaze-based text entry in-
terfaces use dwell-time to select virtual keys letter by letter. Dwell-
time-based interfaces are intuitive to learn but impose a waiting
period to the user. Word prediction is an effective feature to accel-
erate dwell-time-based keyboards [Diaz-Tula et al. 2012; Diaz-Tula
and Morimoto 2016; Trnka et al. 2009]. Adjustable or cascading
dwell-time keyboards allow the user to change the dwell period
according to their typing rhythm and result in a higher typing rate
(about 20 wpm) [Majaranta et al. 2009; Räihä and Ovaska 2012].
Mott et al. [2017] proposed a cascading dwell-time method, which
achieved an average typing rate of 12.4 wpm by utilizing a language
model to compute the probability of each key being entered next
and adjusts the dwell-time accordingly.

2.1.2 Gesture-based interface. Previous work investigated different
gaze gestures to replace dwell-time selections of a single charac-
ter [Isokoski 2000; Porta and Turina 2008; Sarcar et al. 2013; Wob-
brock et al. 2008]. Gaze gestures associated with dynamic visual
elements have also been proposed. Huckauf and Urbina [2007] de-
signed pEYEWrite, an expandable pie menu with letter groups, in
which a user can type a letter by simply crossing the borders of
the corresponding sections. Although the letter-level gaze gesture
typing methods have slower text entry rates compared with dwell-
time methods, they can save screen real estate by only using small
regions for gaze gestures.

Interfaces using a gaze gesture to type word by word show
promising efficacy in eye typing. Shorthand Aided Rapid Keyboard-
ing (SHARK) introduced word-shaped-based typing in a broader
text entry literature, which maps gestures on a touch-screen vir-
tual keyboard to words in a lexicon [Kristensson and Zhai 2004;
Zhai and Kristensson 2003, 2012]. Kristensson and Vertanen [2012]
showed the potential of dwell-free word-shape-based eye typing in
a pilot experiment. The Filteryedping interface asks the user to look
at the keys that form a word and then look at a button to list word
candidates [Pedrosa et al. 2015]. Kurauchi et al. [2016] proposed
a word-path-based text entry interface, EyeSwipe, that predicted
words based on the trajectory of a user’s gaze while the user scans
over the keyboard. The word-level gaze gesture concept can be
applied to a non-QWERTY keyboard for small screens [Zhang et al.
2017].

2.1.3 Continuous Writing. With continuous writing interfaces, a
user can type a letter, a word, or even a phrase without any pause.

Dasher [Ward and MacKay 2002] is a popular dwell-free method
realizing the continuous writing concept. The interface vertically
arranges the letters on the side of the screen. As the user selects
letters, the keyboard dynamically changes, moving selected let-
ters horizontally and collecting them into words. One of the latest
studies found significantly faster text entry rates for Dasher when
compared to a dwell-keyboard (14.2 wpm versus 7.0 wpm) [Rough
et al. 2014]. Another example is Context Switching, a saccade-based
activationmechanism for gaze-controlled interfaces [Diaz-Tula et al.
2012; Morimoto and Amir 2010]. The interface has two duplicated
keyboard regions, and the last fixated key is selected when a user’s
gaze switches between the keyboard regions.

2.2 Head-based Text Entry
Most gaze-based text entry methods and interfaces can be directly
applied to head-based text entry. However, few studies have ex-
plored the performance and user experience of head-based text
entry. Hansen et al. [2004] compared mouse-, head- and gaze-
based text entry methods. The study showed that participants made
fewer errors with the head-based method than with the gaze-based
method. Gizatdinova et al. [2012] conducted an experiment to ex-
amine the performance of gaze-based and head-based pointing in
text entry. The participants used the gaze- and head-based point-
ing method, and achieved an average text entry rate of 4.42 wpm
and 10.98 wpm respectively. They further explored the effects of a
key size reduction on the accuracy and speed performance of text
entry with video-based eye-tracking and head-tracking systems,
and showed that head-tracking systems supported more accurate
and faster text entry than eye-tracking systems for the smallest key
size [Gizatdinova et al. 2018].

Facial expressions or gestures, as an alternative selection method
[Krapic et al. 2015; Lombardi and Betke 2002; Missimer and Betke
2010], can also be applied to text entry tasks [Gizatdinova et al.
2012; Grauman et al. 2003]. Grauman et al. [2003] implemented
the BLINKLINK system to detect voluntary blinks, and study par-
ticipants successfully entered text with BLINKLINK paired with
a scanning keyboard. Another study examined mouth-open and
brow-up selections with head-based pointing on a virtual QWERTY
keyboard [Gizatdinova et al. 2012]. The mean text entry speed was
3.07 wpm with mouth-open and 2.85 wpm with brow-up. Our work
is the first to use head gestures for editing commands in gaze-based
or head-based text entry systems.

2.3 Combination of Gaze and Head Input
As head-based pointing is more stable and easier to control while
not as fast as gaze-based pointing [Bates and Istance 2003], some
studies proposed and examined head-assisted eye pointing [Ku-
rauchi et al. 2015; Kytö et al. 2018; Sidenmark et al. 2020; Špakov
et al. 2014]. The multi-modal pointing method allows using gaze to
perform a coarse long-distance jump and using head movements
to make fine adjustments. User experiments demonstrated that
combining the accuracy of head movements and the speed of gaze
increased the efficacy of pointing. Mardanbegi et al. [2012] used
the vestibulo-ocular reflex to detect head movements and allowed
users to maintain their focus on a target while issuing a command.
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Instead of using both modes to improve target pointing and selec-
tion, in this paper, we propose the use of head gestures for editing
commands and eye gaze for fast and hands-free text entry.

3 INTERFACE DESIGN
HGaze Typing offers an enhanced typing experience with richer
text editing features. The interface can achieve efficient text entry
by using a gaze-path-based interface combined with head gestures
(nodding, shaking, and tilting) to start, end, and cancel a gaze path;
select candidate words; and delete words.

3.1 Design Principles
Head-based systems can provide a more accurate and stable input
than gaze-based systems [Hansen et al. 2004]. When performing
commands with head-tracking systems, users can simultaneously
receive visual information or feedback with their eyes, and per-
form actions with their head movements. However, people with
motor impairments feel fatigue when using head-tracking systems
for long periods [Feng et al. 2018]. Gaze can be used to reduce
head movements and help to create a faster and more comfortable
interaction.

We designed the HGaze Typing interface to take advantage of the
benefits of head gestures and eye movements as input mechanisms
and limit the potential frustration that users may feel. Based on
the features of head and gaze inputs, the main design principles
of HGaze Typing are: (1) using head gestures to perform tasks
requiring high accuracy, (2) using head gestures for commands
associated with visual activities, (3) using gaze inputs for tasks that
can be accomplished with fast movements and a coarse level of
accuracy.

3.2 Head Gestures and Text Entry Tasks
A gaze-based text entry interface that uses a word path method (e.g.,
EyeSwipe [Kurauchi et al. 2016]) must provide solutions for five
text entry tasks: (1) initiating or finishing a word path by selecting
the first letter or the last letter respectively, (2) connecting (by
gaze inputs or head movements) the middle letters of the desired
word to generate a path, (3) canceling a path when it is started
involuntarily, (4) choosing a word from a candidate list, and (5)
deleting an unwanted word.

According to the design principles, we map nodding gestures
to selection tasks. Gaze path recognition depends on the correct
selection of the first and last letter. Additionally, selecting the first
and last letter of a word in word-path-based text entry happens
more frequently than the other typing tasks, such as deleting a word.
A nodding gesture is faster than other common head gestures and is
considered as the best head gesture for making a selection [Špakov
and Majaranta 2012].

Deletion tasks are usually associated with visual activities (for
example, check if the entered word is correct) and also require
accuracy. HGaze Typing uses a head shake (rotate head to the left or
right) for a word deletion. Word path canceling is a similar concept
as deletion, and is also assigned to the shaking head gesture.

When there is a list of candidates, a user will need to scan the
word list before choosing the desired word and check if an entered
word needs to be replaced. A head gesture, especially tilting, will

be more suitable than a gaze input for this task. When tilting the
head, one can keep his or her gaze on the screen without missing
any visual information. Besides, the direction of a tilt provides easy
navigation on the word list: a left tilt initiates navigation to the left,
and a right tilt to the right.

The definition and illustrations of head gestures and their corre-
sponding text entry tasks are shown in Table 1.

3.3 HGaze Typing Interface
The HGaze Typing interface is composed of a text box, a can-
cel/delete indicator, a virtual keyboard, and a confirm key (Figure 1).
To enter a word with HGaze Typing, the user selects the first letter
of the word by fixating on the virtual key and performing a nod.
A red dot appears at the bottom of the key as visual feedback of
a fixation. After the user confirms the first letter, the borders of
the virtual keys disappear as an indication of the start of a gaze
path. Next, the user glances through the vicinity of the intermediate
letters of the word until reaching the last letter. A red dot appears
on the key showing a fixation is detected by the system, and the
user nods to confirm the last letter. The gaze inputs segmented
by the two nods, or the gaze path, are used by the HGaze Typing
system for word prediction.

A word candidate list containing five possible words pops up
above the last letter key. The most probable candidate is placed
at the center of the list, with the second most probable to its left
and the third to its right, and so forth. The most probable word is
highlighted in the list and is automatically entered in the text box.
The user can tilt his or her head to the left or right to replace the
typed word by another candidate word. The selected candidate is
highlighted in the list, and the word in the text box is replaced.

If the desired word is not in the candidate list, the user can delete
the typed word by shaking his or her head. If the user accidentally
triggers an unwanted gaze path, he or she can also cancel the
current path with this gesture. A cancel/delete indicator is placed
to the right of the text box, which serves as a reference for the user
to check the cancel/delete status.

4 SYSTEM DESIGN AND IMPLEMENTATION
The HGaze Typing interface has four states: an idle state (also the
initial state), a gaze lock state, a gaze path state, and a candidate se-
lection state (Figure 2). When the system has detected a downward
head movement or an intention to nod, a gaze lock is activated to
prevent the gaze shift due to the potential nod. Once a nodding
gesture is completed, the gaze position information is unlocked and
restored for gaze path classification. We designed two algorithms,
fixation estimation and head gesture recognition, to process the
gaze and head movement data required to operate the HGaze Typ-
ing interface. We also proposed the gaze lock mechanism and a
paired gaze path restoring algorithm to minimize the effects of gaze
shift from head movements.

We designed two algorithms, fixation estimation and head ges-
ture recognition, to process the gaze and head movement data
required to operate the HGaze Typing interface.

The following sections introduce the fixation estimation and
head gesture recognition algorithms. The gaze lock mechanism and
the paired gaze path restoring algorithm are also described. Finally,
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Figure 1: The HGaze Typing interface. The text to be entered is shown above the text box (“gaze”). The word can be typed by
completing the following actions: (1) Fixate on the first letter of the desired word. The red dot on the key indicates a fixation.
(2) Select the key with a nod. (3) Glance through the intermediate letters. The corresponding gaze path is used to compute the
candidate words. (4) Fixate on the last letter and selected by a nod. The most probable word is typed, and a candidate list with
five words is shown above the key. (5) If desired, change the typed word with a head tilt (left or right). (6) Use a shaking gesture
to delete a typed word (a shake can also be used to cancel a gaze path).
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Table 1: Head gestures and the corresponding text entry tasks.

Gesture Illustration Text Entry Task

Nod Start or end a gaze path

Shake
(Rotate head to
the left or right)

Cancel a gaze path
Delete a typed word

Tilt left Change the selected candidate
to its left candidate

Tilt right Change the selected candidate
to its right candidate

Tilt and hold

Change the selected candidate to
a candidate 𝑛 words away from it
(𝑛 depends on the tilting direction
and the holding time of the head
position)

we explain the Fréchet score used for computing candidate words
from a gaze path.

4.1 Fixation Estimation
The system first applies an average filter on the fixation data from
the eye tracker to reduce the noise from the gaze input. This filter
removes samples that are about 45 pixels (half of a key’s height)
away from their neighbors. The system uses the filtered fixations
to compute the gaze path and identify each letter key the user
intends to select. To estimate the intended key from the gaze input,
the system computes the squared Euclidean distance between the
center of every letter key and the filtered fixation position. The key
closest to the gaze position is registered as the intended, currently
focused key and marked with a red dot on the graphical interface.

The eye tracker sometimes fails to emit a fixation signal when
a user looks at a key due to noise in the raw gaze input. This
causes a delayed detection and can affect the text entry experience
negatively. We used a time accumulation strategy to solve this
problem and enhance the fixation estimation. When the user’s gaze
enters a virtual key, the system starts recording the time that the

gaze stays inside the key (temporary gaze shifts outside the key
shorter than 50 ms are ignored). Once the elapsed time exceeds
a threshold, 80 ms in HGaze Typing, a fixation signal with the
coordinates of the center of the key as the position information is
generated.

4.2 Head Gesture Recognition
Three head gestures (nodding, shaking, and tilting) as well as the
intention to nod (moving the head down), are detected based on the
head pitch, yaw, and roll data from the eye tracker (at a frequency
of 90 Hz). The nodding and shaking gestures are mapped to text
entry tasks performed only once in a short amount of time, which
can be recognized by a template matching method. Tilting supports
the holding operations, and is detected using a threshold-based
method using both head rotation data and time information. The
intention to nod can be easily recognized by the velocity of head
movement in a downward direction.

4.2.1 Nod and Shake Recognition. The system takes templates from
the user and uses these templates to classify nodding and shaking
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Figure 2: HGaze Typing takes eye and head movements as
inputs. Algorithms are proposed for fixation estimation and
head gesture recognition. The text entry interface uses the
processed gaze and head information to perform text entry
tasks. Detected head gestures can result in a transition be-
tween typing states or the execution of text entry tasks.

gestures. To collect a personalized template for each user, we asked
the users to nod and shake their heads three times. The system
finds the global extremum (e.g., the global minimum for pitch data
for nodding), and saves 15 frames before the global extremum of
the pitch, yaw, and roll data as templates. Each template can be
seen as a 3 × 15 matrix.

Detections are performed on each frame of the data stream:
D = (p, y, r)T ∈ R3×15 denotes the pre-processed data stream from
the latest 15 frames, where p, y, r ∈ R15 are vectors denoting the
pitch, yaw, and roll data respectively. We denote the pre-processed
template D = (p, y, r)T ∈ R3×15.

The normalized cross-correlation (NCC) score that the system
uses to compare the data stream angles with the template angles is
computed as

NCC(D,D) def= D : D

∥D∥L2



D




L2

=
p · p + y · y + r · r√∑15

i=1

(
p2i + y

2
i + r

2
i

) ∑15
i=1

(
p2i + y

2
i + r

2
i

) (1)

To decide whether there is a nod, we use the three user-nodding
templates Dn,1,Dn,2,Dn,3 and computed the NCC “nodding score”,
NCCn = 1∑3

i=1 αi

∑3
i=1 αi NCC(D,Dn,i ), as a weighted average of

the NCC’s with three user nodding templates. We computed the
NCC “shaking score” analogously. The highest NCC is empirically
assigned the weight αi = 2 while the other two have weights of 1.

The system classifies a nod or a shake if the NCCnodding score or
the NCC shaking score is above a threshold. The default thresholds
of nodding and shaking are set to 0.9 and 0.85, respectively, and
can be adjusted during typing. Note that the nodding and shaking
gestures have distinct pitch, yaw, and roll data streams so that a

gesture that has a high NCC nodding score will not have a high
NCC shaking score.

4.2.2 Tilt Detection. We use a threshold-based algorithm to detect
a left or right tilt as well as the possible holding action in the
left or right tilt direction. When the roll value is larger than a
predetermined threshold for n frames, a right tilt is detected by the
system. If the user keeps the right-tilting position, the system will
change the selected word to its right candidate every 10 frames.
The processes for the left side are similar. The number n can be
adjusted based on the user’s performance and preference.

4.2.3 Nodding Intention. A nodding intention is defined as a down-
ward headmovement. The system takes the pitch data and computes
the velocity of pitch rotation. If the downward speed is above a
threshold, a nodding intention is detected and registered in the sys-
tem. The nodding intention will be canceled if the pitch value stops
decreasing. In our implementation, a counter is added to handle
the noise of the raw data. After a nodding intention is registered,
the counter counts the number of frames in which the head is not
moving down. If the count is more than n frames, the nodding
intention is canceled. The velocity threshold is empirically set to 1,
and n is set to 4. When a nodding gesture is classified, the nodding
intention is also canceled.

4.3 Gaze Lock
Head and eye movements can interfere with each other. Measure-
ments of gaze direction inevitably include a shift when the user
nods for two reasons: (1) a remote eye tracker cannot precisely
estimate gaze position during a sudden head movement, and (2)
users naturally move their gaze down a little when performing
nods. In an earlier version of HGaze Typing, the gaze shift during a
nodding gesture that we observed can cause an unwanted selection
of a key. As a result, the accuracy of selecting the first and last
letter of a word will decline and cause the prediction of a wrong
word. To prevent this issue, we added a gaze lock state to the system.
Once a nodding intention is detected, the gaze lock is triggered.
The system stops receiving gaze inputs during this lock state, and
the fixated key remains unchanged. The gaze lock will be released
once a nod is detected or the nodding intention is canceled. Pilot
studies showed that the gaze lock is not noticeable to participants
and is an effective way of handling the nod-gaze interference.

4.4 Gaze Path Restoring
The system releases the gaze lock after a nod is detected, and use the
gaze fixation inputs to generate gaze path information. In this gaze
path state, the gaze shift is likely to affect the first few fixations and
therefore produce an inaccurate word candidate list. The system
restores the gaze path by “dragging” the shifted gaze fixations back
to the center of the first letter as we describe next.

We denote the point in time when the nod is detected by t0 and
the length of the time interval after the user selected the first letter
of a word byT . The system computes a new fixation using a convex
combination of the center position of the selected first letter and
the current gaze fixation:

Fixationnew(t) =
t − t0
T

Fixation(t)+
(
1 − t − t0

T

)
KeyCenter (2)
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for t ∈ [t0, t0 +T ]. Here Fixation, Fixationnew, and KeyCenter are
represented in 2D screen coordinates.

The above method restores the first part of the gaze path to the
user-desired path and alleviates the effects of a gaze shift. Once
T frames have been processed after a nod is detected, the system
uses the actual gaze positions. The interval T was empirically set
to 500 ms.

4.5 Candidate Selection
HGaze Typing uses gaze paths to compute candidate words. The
nodding gestures specify the first and last letters of a word and
segment the gaze path from the continuous gaze inputs. The system
uses the first and last letters to filter the lexicon when choosing the
candidate words.

HGaze Typing computes a probability for the gaze path using
the Fréchet distance [Fréchet 1906], which is widely used in gesture
and input pattern recognition [Despinoy et al. 2016; Sriraghavendra
et al. 2007; Zhao et al. 2013]. The final probability of each word
candidate is obtained by applying Bayes’ theorem. Only words in
the lexicon with the given first and last letters are considered as
word candidates. We use the Fréchet score as a representation of
the posterior distribution of the words in the lexicon.

The prior discrete distribution of the words in the lexicon L is a
simple word frequency count normalized by the total number of
words in a text corpus. Word frequency data was extracted from
the Corpus of Contemporary American English [Davies 2008]. The
posterior distribution of the word candidates is given by:

Pr(W = wi |G = д) =
Pr(G = д |W = wi ) Pr(W = wi )

Pr(G = д) (3)

whereW is a random variable that represents the word entered
by the user, G is a random variable representing the shape of the
gaze path and д is the gaze path from the user. As Pr(G = д) is
independent ofwi , the systems searches for thewi that maximizes
Pr(G = д |W = wi ) · Pr(W = wi ) and Pr(G = д) does not need to be
calculated.

The probability Pr(G = д |W = wi ) is defined as:

Pr(G = д |W = wi ) =
S(д,wi )∑

w j ∈L
S(д,w j )

(4)

where the gaze path score S(д,wi ) is calculated as:

S(д,wi ) =
| Ideal(wi )|

1 + DFDk (д, Ideal(wi ))
. (5)

Here DFD(·, ·) represents the discrete Fréchet distance, Ideal(·) is
the sequence of key center coordinates of the characters that form
the word, and k is a positive scaling constant, empirically set to 6.6.
The gaze path score is proportional to | Ideal(wi )| to favor longer
words.

5 EXPERIMENT
We conducted an experiment spanning nine sessions to evaluate
the usability of the HGaze Typing interface. In this experiment,
we used a dwell-time keyboard as a baseline text entry method,
following previous research [Hansen et al. 2004; Kurauchi et al.
2016; Rough et al. 2014; Wobbrock et al. 2008].

5.1 Participants
Eleven university students without physical impairments were
recruited for the experiment. One participant met significant cali-
bration issues with the eye tracker due to glasses reflections and did
not complete the experimental sessions on the first day, resulting in
a total of ten participants (4 males and 6 females, with an average
age of 21.4). The participants were all native English speakers and
proficient in using a QWERTY keyboard. Three participants wore
glasses, and one participant wore contact lenses. All participants
had little or no experience with eye-tracking or head-tracking sys-
tems. Each participant received a total of $50 compensation for
participating in the study.

5.2 Apparatus
We conducted the experiment on a laptop (3.70 GHz CPU, 16 GB
RAM) running Windows 10, connected to a 19-inch LCD monitor
(1280 × 1024 px resolution). A Tobii Eye Tracker 4C with a sampling
rate of 90 Hz was used to collect the gaze and head information. The
HGaze Typing interface and the dwell-time-based keyboard were
built in C++ using the Qt framework. The HGaze Typing interface is
shown in Figure 1, and the dwell-time keyboard used the same lay-
out with an additional space key below the virtual letter keys. The
lexicon was the union of Kaufman’s lexicon [Kaufman 2015] and
the words in MacKenzie and Soukoreff’s phrase dataset [2003]. The
dwell period was set to be 600 ms, following Hansen et al. [2003].

5.3 Procedure
Each participant visited the lab on three different days (12–48 hours
apart) and performed 3 sessions of typing with each interface per
day, resulting in 9 text entry sessions for each interface. The order
of the interfaces was counterbalanced using a Latin square. Par-
ticipants spent 40 to 75 minutes on each day. Before the formal
sessions of each interface on each day, there was a practice session
in which participants typed 1–3 sentences. For both HGaze Typing
and the dwell-time keyboard, every formal session on the first day
contained 6 phrases. Participants typed 7 phrases in each session
on the last two days.

On the first day, the experimenter started the study with a brief
introduction of eye-tracking and head-tracking systems and the
two text entry interfaces. The eye tracker was calibrated for each
participant at the beginning of each day and re-calibrated when
necessary. The participants were instructed to sit comfortably in
front of the screen with a distance of about 70 cm. Before the start of
the HGaze Typing text entry sessions on each day, the users’ head
gestures were collected by the HGaze Typing system as templates.
The thresholds of head gesture recognition were modified during
the practice session.

The participants were encouraged to memorize the phrase and
type as fast and accurately as possible. The phrases given in the
experimental sessions were randomly selected from the dataset by
MacKenzie and Soukoreff [2003]. For each typing trial, both typing
interfaces compared the typed phrase with the given phrase and
proceeded to the next trial automatically if there was a match. Al-
ternatively, the participant could finish the current trial by selecting
the “OK” key. Between sessions, participants could take a break
of up to 5 minutes. At the end of the last session, the participants
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Figure 3: Mean and standard error of text entry rate in
word per minute (WPM) for each session and interface. The
text entry rates in the last three sessions are marked with
squares.

completed a short questionnaire on their demographics and their
subjective feedback about the two text entry methods.

6 RESULTS
In this section, we analyze the results and summarize the subjective
feedback of the two text entry interfaces.

6.1 Text Entry Rate
The text entry rate was measured in words per minute. The average
length of a word was defined as 5 characters (excluding space).
Overall, the mean text entry rate using HGaze Typing was higher
than using the dwell-time keyboard (Figure 3). In the last three
sessions, a significant effect of the interface was found (F1,9 = 7.81,
p = 0.021), with an average typing speed of 11.22 wpm for HGaze
Typing and 9.53 wpm for the dwell-time keyboard.

For both methods, there was a significant effect of session on
the text entry rate (HGaze: F8,72 = 15.74, p < 0.001; Dwell-time:
F8,72 = 5.42, p < 0.001), which indicated a learning effect for both
methods. The average text entry rate with HGaze Typing increased
from 7.09 wpm in the first session to 11.5 wpm in the last session.
Using the dwell-time keyboard increased the typing speed from
8.29 wpm in the first session to 9.13 wpm in the last session. There
was also a significant session × interface interaction on text entry
rate (F8,72 = 21.06, p < 0.001). That is, extra training is likely
to further expand the difference between the HGaze Typing and
dwell-time method in terms of typing speed.

The average maximum text entry rate for each session and par-
ticipant with HGaze Typing was 16.21 wpm and 10.85 wpmwith the
dwell-time keyboard. Interface, session, and interaction between
session and interface had a significant effect on the maximum typ-
ing speed (interface: F1,9 = 30.93, p < 0.001; session: F8,72 = 10.04,
p < 0.001; session × interface: F8,72 = 5.22, p < 0.001). One par-
ticipant achieved 23 wpm using HGaze Typing. All participants
achieved a text entry rate of at least 15 wpm using HGaze Typing
and only 11 wpm using the dwell-time keyboard.
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Figure 4: Mean and standard error of the number of deletes
and cancels per sentence in each sessionwithHGaze Typing.

6.2 Accuracy
The average Minimum String Distance (MSD) error rate between
the given phrase and the typed phrase in each session were less
than 3.5% over the nine sessions, and less than 1.5% in the last
six sessions for both HGaze Typing and the dwell-time keyboard.
In the last session, the mean uncorrected error rate using HGaze
Typing was 0.37% and 0.21% using the dwell-time method. The low
rate of uncorrected errors in the entered sentences indicated that
participants were keeping the typed phrases accurate with both
interfaces.

The mean number of deletes and cancels per sentence in each
session when typing with HGaze Typing interface is shown in Fig-
ure 4. The average number of deletes reduced from 1.75 in session 1
to 0.57 in session 9 (F8,72 = 7.41, p < 0.001), and the number of can-
cels reduced from 1.05 in session 1 to 0.6 in session 9 (F8,72 = 2.69,
p = 0.086). The phrases provided in the experiment had an average
length of 5.4 words. That is, for every ten words, the participants
only performed about one cancel and one delete after practice.

6.3 Subjective Feedback
The post-experiment questionnaire asked participants to rate both
interfaces on a 7-point Likert scale of their performance and pref-
erence (Figure 5). Participants believed HGaze Typing had better
performance (5.5) than the dwell-time keyboard (4.9). They also
indicated a preference for the HGaze Typing interface over the
dwell-time method (5.8 vs. 4.9).

Speed, accuracy, comfort, and learnability were evaluated by
participants (Figure 5). HGaze Typing was rated higher on aver-
age for speed and general comfort, and the dwell-time keyboard
was rated higher for its accuracy and learnability. The participants
also evaluated eye-control and head-control efforts. Participants
reported the same eye-control effort using both interfaces (4.6).
HGaze Typing required a higher head-control effort of the partici-
pants (5.8) than the dwell-time keyboard (2.9) but no participant
reported neck fatigue using HGaze Typing.

The efficiency of HGaze Typing was highlighted by the study
participants. They thought the interface was “much more time and
speed efficient” (P3) and “was a lot nicer to be able to spell out
longer words” (P1). As for the accuracy, which was not perceived to
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Figure 5: The average ratings of overall performance and
preference, and perceived speed, accuracy, comfort and
learnability, on a 7-point Likert scale.

be as good as the dwell-time keyboard at the beginning, participants
reported it improving after practice: “Accuracy increases over time
with experience as does speed” (P8). Participants liked the concept
of using various head gestures after practice. P9 reported that “[it]
took a while to master the nod. Shake was fine, and so was the
tilt. I really like the tilting concept to change words. I thought that
was pretty unique.” “The nod is easy to use and understand” (P8).
P11 indicated that “The [HGaze Typing] keyboard allowed me to
establish a rhythm where I could imagine a sentence in my head
and simultaneously type it out on the screen.”

7 DISCUSSION AND CONCLUSIONS
We designed and implemented HGaze Typing, a text entry interface
combining head gestures and gaze paths. After five experimental
sessions, HGaze showed better efficacy than a dwell-time keyboard.
Subjective feedback showed that HGaze Typing had better user
satisfaction than a dwell-time keyboard. With HGaze Typing, par-
ticipants achieved an average text entry rate of 11.5 wpm after
8 experimental sessions (about 56 phrases). The uncorrected er-
ror rate of using HGaze Typing is low, which indicates users will
not need to balance speed and accuracy deliberately when using
this system. Subjective results demonstrate that HGaze Typing is
more comfortable and provides better-perceived performance than
a dwell-time keyboard.

HGaze Typing achieved a text entry rate comparable to gaze-
path-based interfaces (e.g., EyeSwipe), and is considerably more
efficient than head-based text entry. Comparing to interfaces that
use gaze input only, HGaze Typing uses head movement as an ad-
ditional input to perform commands, which allows users to look
anywhere on the screen without time restrictions. A user can read
the information on a button as long as needed before making a se-
lection, or deliberately compose the next sentence without moving
his or her gaze outside the virtual keyboard.

Adding head gestures to gaze-based text entry provides natural
and efficient command activations. The study participants also liked
the concept, and one participant noted that the nodding gestures
created a pattern for text entry. Some text entry activities, such as
choosing a word from a candidate list, require visual search before
making a selection. With just gaze input, the two tasks—scanning
and selecting—has to be done sequentially. The tilting gestures used
in HGaze Typing allows simultaneous scanning visual activities

and candidate selection. By utilizing additional head gestures in
the gaze-based text entry systems, we can facilitate additional text
entry and editing tasks.

Another advantage of using head gestures is that it can reduce
the virtual keyboard area. By using shaking gestures, the can-
cel/deletion button for gaze-based selection is no longer needed.
Additionally, a word candidate list is necessary for gaze-path-based
text entry interfaces as well as for features like auto-completion and
word prediction. Gaze-based selection methods require a certain
minimum button size, to handle gaze noise, and can consume a
considerable area on the screen. Tilting gestures provide navigation
and use much less space to list words. The candidate list is small
and is placed between the letter keys in the HGaze Typing interface.

HGaze Typing manages the processing of the gaze and head
inputs in one system. The average number of deletes and cancels
is about one per ten words, indicating the robustness of the sys-
tem. When designing a multi-modal interface with both head and
gaze inputs, a major issue is to handle the commonly occurring
head-gaze interference: (1) the eye tracker provides inaccurate gaze
position measurements during a fast head movement, and (2) the
user’s gaze is not stable when performing head gestures. To handle
the gaze shift during a nodding gesture, in HGaze Typing, we de-
signed the gaze lock state and the gaze path restoring algorithm.
It should be noted that this solution is specifically designed for
simple selection tasks and gaze-path-based text entry, and cannot
recover the gaze position to a precision that may be required by
other applications (e.g., gaming or design). When designing other
multi-modal interfaces in the future, designers should consider the
potential interference between different input channels.

Besides hands-free text entry and accessibility applications, the
proposed method can be extended to other devices. For example,
head motion and gaze tracking sensors are prevalent on virtual
reality and augmented reality (VR/AR) devices. When using these
devices in public, the HGaze Typing interface can be an alternative
to manual and voice input.

The current implementation of HGaze Typing system requires
calibration for head inputs. In the future, we plan to use machine
learning algorithms to perform head gesture classification and al-
low calibration-free text entry commands. Another limitation of
this work is the lack of usability evaluation for people with motor
impairments. People with motor impairments can have different
gaze and head movement patterns, so that a longitudinal user stud-
ies with people with different mobility levels can provide insights
into head gesture design in HGaze Typing.
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