
5* Magic Wand: a RGBD camera-based
5 DoF pointing device for 3D interaction

Alexandre M. F. de Sousa, Carlos H. Morimoto
Department of Computer Science

University of São Paulo
São Paulo, Brazil

{alemart, hitoshi}@ime.usp.br

Abstract—This paper introduces the 5* Magic Wand, an
inexpensive pointing device for 3D interaction. As users
play the role of a “wizard”, the 5* Magic Wand allows
them to interact with the computer by pointing to places,
performing gestures, and casting “spells”. We have developed
computer vision techniques to track the wand with 5 degrees
of freedom, and built a real-time prototype consisting of a
standard PC, a RGBD camera, and a simple stick. Finally,
in order to demonstrate the applicability of the system for
navigating in virtual environments, we have created a 3D
application called “Magic Carpet”.

Keywords-3D user interface; magic wand; RGBD sensor;
virtual reality; ubiquitous computing.

I. INTRODUCTION

As technology drive us away from office spaces, inter-
acting with computers like we do with the traditional
desktop environment is no longer enough. In Human-
Computer Interaction (HCI) research, advances in hard-
ware and software have stimulated the development of a
new generation of user interfaces called post-WIMP. Post-
WIMP interfaces contain at least one interaction technique
that is not based on classical 2D widgets such as menus
and icons [1]. The motivation behind these interfaces is
to leverage the mundane, pre-existing knowledge of users
for reducing the gap between human goals and the actions
required to accomplish them [2].

One important application of post-WIMP interfaces is the
interaction in virtual environments (VEs). In particular,
travel in VEs is the most common interaction activity in
3D user interfaces [3]. Such interfaces should be easy to
learn and easy to use, becoming “second nature” to users.
As our interaction with computers expand beyond the
standard desktop setting, it becomes desirable to explore
different input settings. One possible approach is to use
a wand. The affordances of that physical tool can be
exploited in a variety of ways; it can be mapped to
different interaction tasks in VEs. Using the notion of a
magic wand for interaction makes it easy for the regular
user to interact with the virtual world, as it is unobstructive
and removes the learning curve of less intuitive equipment
such as the 3D mice [4]. In a recent study, Khan et al. [5]
have shown that adopting a wand is an efficient manner to
move within a VE, compared to relying on the position of
the user in the physical space. Additionally, in comparison
to using gloves or a 3D mouse, wand users tend to adopt

(a) The wand is passive and easy to build.

(b) A user holding the wand.

Figure 1: The 5* Magic Wand.

more comfortable postures (they tend to find postures they
like rather than postures they feel are required) [6].

Wands also find application in diverse areas such as smart-
home environments [7], education and interactive art. A
magic wand could be used in a smart-home to turn a light
on/off, control a television and so on. A teacher could use
a magic wand in a classroom to point to and manipulate
an object in 3D (e.g., a cell, a chemical molecule or
a machine) in order to aid an explanation, if such an
input device was cheap and easy to deploy. Similarly, for

22 SBC Journal on Interactive Systems, volume 6, number 2, 2015

ISSN: 2236-3297

storytelling purposes, an artist could use a magic wand as
part of an artistic performance, mixing both the real and
the virtual worlds.

Nowadays, RGBD cameras are becoming inexpensive and
widespread. These cameras provide color and estimated
depth data for each pixel. In November 2010, Microsoft
released the Kinect, a popular RGBD sensor that is an
order of magnitude cheaper than earlier similar devices [8].
More recently, Intel has announced the RealSense1, a
RGBD sensor that may be embedded in everyday devices
such as laptops. RGBD cameras have a wide range of
areas of applications, including: HCI, augmented reality,
3D reconstruction and robotics [9]. The potential ubiquity
of such sensors in the future make them an attractive
choice for implementing an interface such as a magic wand
for 3D interaction.

This paper presents the 5* Magic Wand: a minimalist 5
degrees of freedom (DoF) 3D user interface that can be
built inexpensively and that draws upon users’ knowledge
carried over from childhood (e.g., fantasy movies). Unlike
similar works, the 5* Magic Wand includes an on/off
switch to enhance its interaction capabilities and is tracked
using one RGBD camera, making it resilient against
background noise. A novel computer vision technique to
track the wand is described. In order to show how the wand
may be used for navigating in virtual environments, we
introduce a 3D demo application called “Magic Carpet”.

The rest of this paper is organized as follows. Section
II presents related work. Section III discusses the design
of the 5* Magic Wand. Section IV discusses the system
implementation, the computer vision algorithms to track
the wand with five degrees of freedom and presents a
working prototype. Section V presents a demo application
and section VI concludes the paper.

II. RELATED WORK

Using magnetic technology, Ciger et al. [4] have presented
“The Magic Wand”, a user interface for interaction with
a VE displayed on a large projection screen. The user
flies on a “magic carpet”, exploring the landscape. The
wand is used to point to regions of the scene, and a
small vocabulary of voice commands (“spells”) directs the
simulator. Although the system doesn’t use position data,
it recognizes four basic postures/orientations of the wand.
The hardware setup demands the presence of wired sensors
attached to the wand.

The XWand [7], which works in an intelligent environ-
ment, is a wireless sensor package used to control devices
by pointing at them and performing simple gestures.
The hardware prototype of the proposed handheld device
brings together a combination of sensors and other compo-
nents, such as an infra-red (IR) LED and a microcontroller.
The authors combine the output data of an accelerometer

1https://software.intel.com/en-us/realsense/. Last access: March 11th,
2015.

and of a magnetometer to recover the 3D orientation of
the wand. A pair of calibrated cameras equipped with IR
pass filters is used to determine, by triangulation, the 3D
position of the wand. Although the solution provides an
output of 6 degrees-of-freedom, an important drawback of
the discussed implementation is its high complexity.

Wand-like devices may also be used in everyday con-
texts such as “sofa interaction”. Interactive televisions
are becoming more widespread and feature-rich. On the
other hand, to accomodate such an increasing number of
functions, remote controls get frequently cluttered with
buttons. That said, Bailly et al. [10] have proposed the
use of mid-air gestures to augment and improve remote
control interaction. Their system employs a Wiimote,
which includes a few buttons and provides orientation
data, thus enabling gesture recognition capabilities.

Cabral et al. [11] have developed a collaborative appli-
cation that works in a CAVE system equipped with a
Optitrack System featuring four infrared cameras. One of
the users of the application, called the explorer, uses a
Wiimote coupled with a reflective marker to point where
he wants to navigate to (the Wiimote is tracked for its
position and orientation). Then, he pushes a button to pull
himself to that place. That interaction metaphor, called
“point and go”, was used in a closed VE (i.e., no sky).

Using a pair of calibrated stereo cameras, Guo et al. [12]
have designed the “Featured Wand”, a passive wand with
two colored end markers and a spiral marking in between.
A computer vision system tracks the position and the
orientation of the wand in 3D space, at 9 frames per
second. The authors have subsequently used the wand for
navigation in VEs: tilting up or down controls the incli-
nation of the viewpoint, and rotating left or right controls
the heading. Raising or lowering the wand controls the
elevation, and lateral movements change the panning.

Researchers have also employed computer vision tech-
niques to explore the use of standard laser pointers as
input devices. In a recent work, Kang and Yang [13] track
a laser point by capturing a computer screen projected
in a room and performing a color-based tracking after a
background subtraction. A standard rectification procedure
is employed to identify, in the screen coordinate system,
the location pointed by the laser. Although the solution has
the advantage of low cost, the input is restricted to two
dimensions only, and issuing commands to the computer
can be a daunting task, since there are no buttons or similar
mechanisms. Still, the authors have used hybrid techniques
combining dwell time and gesture recognition to control
the flow of a presentation.

Unlike previous works, the 5* Magic Wand enables real-
time 3D interaction using a passive stick coupled with
a “spell casting” mechanism. Our method employs one
RGBD camera to track the pointing device.

SBC Journal on Interactive Systems, volume 6, number 2, 2015 23

ISSN: 2236-3297

III. DESIGN

The design goals of the 5* Magic Wand can be ennumer-
ated as follows:

1) it should be tracked for its position and orientation
in 3D space;

2) it should enable users to point to elements on a
screen;

3) it should present a mechanism for enabling the
execution of “spells” (gestures), hence giving the
wand its magic touch;

4) it should be built easily and inexpensively;
5) it should be wireless.

The proposed design for our wand brings features that
enable its tracking by a RGBD camera. We start with a
plastic rod with length of about 30cm. Colored markings
placed along the wand (see Fig. 2a) enable its tracking by
a computer vision system. This particular configuration
allows 5 DoF pose estimation (position in 3D space plus
two rotation angles: yaw and pitch). One can then define a
3D ray starting from the head of the wand pointing to the
direction of the rod. Once the coordinates of the screen
are known, it’s easy to use the wand as a pointing device.

In addition to the above, we have designed a switch: a
movable part near one of the extremes of the wand will
indicate when a “spell” begins and when it ends (see
Fig. 2b). The switch may be moved using a thumb, and it
works like an on/off element. Whenever it overlaps the
corresponding extreme of the device (i.e., the extreme
sharing the same color), the wand is said to be active.
Otherwise, it’s said to be inactive.

The blue marking helps to determine the orientation of the
wand. Although it may be placed near the switch (Fig. 1a)
or at one of the ends of the wand (Fig. 1b), after testing
both configurations we have found out that the former is
a better choice to reduce occlusions and to help the user
move the switch.

Finally, the design of our passive wand (i.e., no electronic
components, no wires, etc.) enables it to be built easily and
inexpensively and makes it a wireless interaction device.

IV. IMPLEMENTATION

As shown in Figure 4, the computational implementation
of the 5* Magic Wand is divided in three layers:

• Sensory layer: a RGBD camera will capture color
and depth data from the environment;

• Tracking layer: this layer determines the position,
orientation and state (active or inactive) of the wand;

• Application layer: uses the wand as an input device
for some activity (e.g., travel in a VE).

Regarding the sensory layer, a Kinect camera is used. Its
availability and affordable cost make it an attractive choice
for implementing the system. The tracking layer brings
technical challenges that will be addressed in more detail.

(a) Active. (b) Inactive.

Figure 2: Two modes of operation.

A. Tracking layer

As depicted in Figure 3, given the RGBD data from the
sensory layer, a sequence of steps is employed to extract
the position, orientation and state (active or inactive) of
the wand.

Figure 3: Steps performed by the Wand Tracker.

24 SBC Journal on Interactive Systems, volume 6, number 2, 2015

ISSN: 2236-3297

Figure 4: System overview.

1) Background extraction: Unlike similar works based on
optical tracking, tracking the wand with a RGBD camera
make it resilient against background noise, since the
background can be extracted using depth data. Addition-
ally, past research has indicated that the depth estimates
provided by the Kinect are quite stable [14].

A background model is created by taking n snapshots
{S1, S2, . . . , Sn} of the depth image. Denoting the depth
value of the j-th pixel of Si by dij , let µj and σj
be, respectively, the mean and the standard deviation of
{d1j , . . . , dnj}. The background model is said to be the
collection of all µj . The set of all σj is used as a noise
profile.

The background extraction is performed by subtracting the
newly acquired depth images from the background model.

2) Image segmentation: After the previous step, the color
image provided by the RGBD sensor features artifacts
belonging to the foreground. The colored markings of the
wand are segmented by converting the color image to the
HSV space and employing a thresholding method.

3) Blob analysis: The resulting blobs, computed using
connected components analysis, indicate the colored mark-
ings. In addition to the blue marking, the wand features
two yellow markings: one corresponds to the on/off switch
and the other indicates one of the ends of the wand. If the
switch is on, the markings overlap, meaning that only one
yellow blob will be visible in the color image. Therefore,
the state of the wand is set to be “active”. If there are two
yellow blobs, the wand is “inactive”.

4) 3D data normalization: A RGBD sensor can provide
the 3D position, in its own coordinate system, of any
pixel [15]. That said, the yellow markings are used to
determine the position of the wand in 3D. The position is
taken to be the 3D location of the center of mass of the
yellow blob (or the mean of the centers of mass if there
is more than one yellow blob).

In order for the wand to be usable in the application
layer, its position and orientation need to be normalized.
This allows one to account for different placements of the
camera. Let R be the cubic region described by:

R : lim
t→∞

t

√∣∣∣∣x−
1

2

∣∣∣∣
t

+

∣∣∣∣y −
1

2

∣∣∣∣
t

+

∣∣∣∣z −
1

2

∣∣∣∣
t

≤ 1

2

We create a transformation T that maps a position from
the camera coordinate system to the normalized space
described by R. Let (xk, yk, zk) be the coordinates of
the wand in the camera system and (x, y, z) be the corre-
sponding normalized position. Given the model parameters
(a, b, c, d, e, f, g, h, i, j, k, l), mapping T is defined as:



x
y
z


 =



a b c d
e f g h
i j k l







xk
yk
zk
1




Expanding the above equation, we have:





x = a · xk + b · yk + c · zk + d

y = e · xk + f · yk + g · zk + h

z = i · xk + j · yk + k · zk + l

A calibration procedure is employed to estimate the model
parameters. Given a set of n ≥ 4 correspondences, denoted
by (x(j), y(j), z(j))↔ (xk

(j), yk
(j), zk

(j)) for 1 ≤ j ≤ n,
the above equations can be rewritten to:



x(1)

y(1)

z(1)

x(2)

y(2)

z(2)

...
x(n)

y(n)

z(n)




=




xk
(1) yk

(1) zk
(1) 1 0 0 0 0 0 0 0 0

0 0 0 0 xk
(1) yk

(1) zk
(1) 1 0 0 0 0

0 0 0 0 0 0 0 0 xk
(1) yk

(1) zk
(1) 1

xk
(2) yk

(2) zk
(2) 1 0 0 0 0 0 0 0 0

0 0 0 0 xk
(2) yk

(2) zk
(2) 1 0 0 0 0

0 0 0 0 0 0 0 0 xk
(2) yk

(2) zk
(2) 1

. . .
xk

(n) yk
(n) zk

(n) 1 0 0 0 0 0 0 0 0
0 0 0 0 xk

(n) yk
(n) zk

(n) 1 0 0 0 0
0 0 0 0 0 0 0 0 xk

(n) yk
(n) zk

(n) 1







a
b
c
d
e
f
g
h
i
j
k
l




A least-squares solution for the model parameters can
be found by applying a pseudoinverse matrix, computed
using methods such as singular value decomposition or
QR factorization [16].

From the end-user point of view, one does not need to
manually describe the correspondences. The calibration
procedure simply requires that the user moves the wand
near the camera (see Fig. 5). Let the curve γ(t) :
(xk(t), yk(t), zk(t)) describe such a movement, where
t ≥ 0 denotes time. We proceed by defining what we
call box functions:

xk
#(d) = d ·max

t≥0
xk(t) + (1− d) ·min

t≥0
xk(t)

yk
#(d) = d ·max

t≥0
yk(t) + (1− d) ·min

t≥0
yk(t)

zk
#(d) = (1− d) ·max

t≥0
zk(t) + d ·min

t≥0
zk(t)

SBC Journal on Interactive Systems, volume 6, number 2, 2015 25

ISSN: 2236-3297

Figure 5: Calibration procedure.

For i ∈ N∗, let us define the family of functions:

Ji(j) =

⌊
j − 1

2(i−1)

⌋
− 2

⌊
j − 1

2i

⌋

Then, for j = 1, 2, . . . 8, we set the correspondences:

x(j) = J1(j) ↔ xk
(j) = xk

(J1(j))

y(j) = J2(j) ↔ yk
(j) = yk

(J2(j))

z(j) = J3(j) ↔ zk
(j) = zk

(J3(j))

Once the model parameters have been estimated, the
normalized 3D position of the colored markings will
determine the orientation of the wand. This phase ends
with a state (active or inactive) and a pose estimation with
five degrees of freedom: the 3D position of the wand plus
two rotation angles (yaw and pitch).

B. Application layer

The tracking layer communicates wand data to the ap-
plication layer. As displayed in Figure 6, an HTML5
application has access to the position, orientation and state
of the wand. Additionally, a gesture recognition module
enhances the interactive capabilities of our wand, turning
it into a “magic” tool.

According to Mitra and Acharya, gestures are meaningful
body movements involving fingers, arms, head or the full
body in order to convey information or interact with the
environment [17]. Ghirotti and Morimoto have pointed out
two main reasons for using gestures for interaction with
computers [18]:

1) People use a wide range of gestures in everyday
life. New gestures can be easily and quickly learned
by observing others perform them;

2) Gesture-based interfaces allow the “natural” usage
of “gesture phrases”. These phrases can be thought
of as a way to break the communication dialog in
parts. These parts have simple meanings and can be
easily interpreted by computers (e.g., the action of
moving an object in a VE can be decomposed in
three parts: grabbing, translating and releasing it).

Figure 6: The wand can control an HTML5 application.

Gestures can be static (the person assumes a specific pose),
dynamic (there is ongoing movement) or a mixture of the
two. Automatic recognition of dynamic gestures requires
temporal segmentation, and often the user has to specify
the beginning and the ending points of a gesture in space
and time [17].

The 5* Magic Wand includes an on/off switch. Whenever
the user pushes the switch so that the wand becomes
active, we’ll say that a spell has begun. Whenever the
user pulls the switch back to its previous position (i.e.,
whenever the wand becomes inactive), we’ll say that a
spell has ended. In this work, a spell is defined to be the
trajectory performed by the wand in its active state.

The Gesture Recognition block depicted in Figure 6 re-
ceives a spell from the Wand Tracker and assigns it a label
(“circle”, “hat”, and so on). The advent of lightweight
and robust gesture recognizers has enabled the rapid
prototyping of gesture-based user interfaces [19], [20].
After normalizing the gestures, often adding position, scale
and rotation invariance, they employ template matching
techniques for recognition. These recognizers usually rely
on simple geometry and trigonometry and perform remark-
ably well with only a few training examples, making them
an attractive choice for enabling users to cast spells with
our wand. Our prototype uses the $1 Recognizer, a popular
single-stroke gesture recognizer [19].

The Wand Tracker, built in C++, sends data to the HTML5
application using TUIO over WebSockets. Although TUIO
is a protocol originally designed to support the develop-
ment of multitouch tangible user interface systems [21],
its feature set makes it a fair choice for the transmission
of wand data.

Figure 7 shows our prototype implementation running at
about 28 frames per second on a Dell All-in-One Inspiron
2330 PC (with 6 GB RAM and an Intel Core i5 CPU at
2.30 GHz).

26 SBC Journal on Interactive Systems, volume 6, number 2, 2015

ISSN: 2236-3297

(a)

(b)

(c)

Figure 7: A prototype implementation featuring gesture
recognition capabilities.

V. DEMO APPLICATION

We have built a simulator in order to demonstrate how
wand based input may be used in a 3D navigation activity.
The user, playing the role of a “wizard”, will fly around
on a “Magic Carpet” that is controlled by the wand alone.
The desirable features for the simulator are the following:

1) The user may travel anywhere around the Earth;
2) The viewpoint is controlled in three dimensions by

the wand (see Fig. 9);
3) The carpet always runs parallel to the ground, in

fixed altitudes (see Fig. 10).

The orientation of the wand controls the viewpoint. More
precisely, let ω = [ωx ωy ωz]t be the orientation of
the wand (see Fig. 8), where ‖ω‖ = 1. Then, at each
framestep, the simulator proceeds as follows:

1) set the panning of the camera to ϕ + ϕ0, where
ϕ = atan2(ωz, ωx) and ϕ0 is a predefined offset2;

2) move the viewpoint if | tan(θ) | ≤ tan(θlim), where
θ = sin−1(ωy) and θlim is an empirical constant3.

Figure 8: Orientation of the wand.

An obvious consequence of the proposed design is that the
viewpoint will move forwards if the wand is laid down
(i.e., θ ≈ 0◦), but it will stop if the wand is put in a
standing position (θ ≈ 90◦). Additionally, changing the
direction of the wand will change the direction of the
camera.

An important feature to be considered when designing user
interfaces is the rest pose. The rest pose is important to
establish a situation where there is no interaction with the
system [18]. In order to rest, the user may put the wand
in a standing position, so that the system is instructed to
stop the flight.

In addition to using the orientation of the wand to navigate
in 3D, the user may also cast spells in order to issue
commands to the Magic Carpet. Three spells are supported
by the simulator: ∧, ∨ and©. Table I associates the spells
to the corresponding actions performed by the simulator.

Spell Resulting action
∧ Increases the altitude.
∨ Decreases the altitude.
© Rotates the carpet by 180◦.

Table I: Spells command the Magic Carpet.

The spells cast by the user are projected onto a plane and
then passed on to the gesture recognizer. The recognizer
receives the spell, normalizes it and then matches it against
the set of supported gestures, as described in [19].

The simulator has been built using Cesium, an open-source
WebGL-based Virtual Globe & Map Engine4.

2in our simulator, ϕ0 = 1.23π.
3in our simulator, θlim = 45◦.
4https://cesiumjs.org/. Last access: March 15th, 2015.

SBC Journal on Interactive Systems, volume 6, number 2, 2015 27

ISSN: 2236-3297

(a)

(b)

(c)

Figure 9: Flying over the university campus.

VI. CONCLUSION

This paper has presented the 5* Magic Wand: a user in-
terface for 3D input that provides position and orientation.
Its physical shape makes it suitable for pointing, gesturing
and casting magical “spells”. The presence of the on/off
switch expands the interactive capabilities of the device.
The simple hardware setup of the wand eliminates the need
of wires/electronic components, hence it is unobstructive
and can be built quickly and inexpensively.

(a)

(b)

(c)

Figure 10: Casting spells to modify the altitude.

Computer vision techniques to track the wand in 3D space
with a RGBD camera were presented. After extracting
the background and finding the colored markings of the
wand, a linear model is employed to determine its position
and the orientation in a normalized space. A calibration
procedure that we have developed is used to estimate the
model parameters.

In order to demonstrate the proposed device and the
presented techniques, we have built a prototype featuring

28 SBC Journal on Interactive Systems, volume 6, number 2, 2015

ISSN: 2236-3297

a standard PC, a RGBD camera and a simple stick. Our
solution works in real-time, making it a suitable choice for
adding wand interaction to virtual reality systems. That
said, we have created a 3D application called “Magic
Carpet” to show how the wand may be used to navigate
in virtual environments. Additionally, a gesture recognizer
enables users to cast magical “spells”, thus enhancing the
capabilities of the simulator.

Given the potential high availability of RGBD cameras in
the near future (e.g., embedded in everyday computers)
and the minimalist nature of the 5* Magic Wand, we
believe that this work may help bring 3D wand interaction
to everyday settings such as education.

Possible improvements upon this work include: evaluate
the wand and the proposed interaction technique with user
studies, include a 6th degree of freedom (twist) on the
wand and use the push-pull mechanism of the switch as
a source of continuous data rather than an on/off one.
Additionally, the passive and inexpensive nature of the
wand enables it to be used for controlling games.

The complete source code of this work is available at
https://github.com/alemart/mestrado. A video showing the
simulator can be found at https://youtu.be/57htwAJ4Im4.

REFERENCES

[1] A. Van Dam, “Post-wimp user interfaces,” Communications
of the ACM, vol. 40, no. 2, pp. 63–67, 1997. 1

[2] R. J. Jacob, A. Girouard, L. M. Hirshfield, M. S. Horn,
O. Shaer, E. T. Solovey, and J. Zigelbaum, “Reality-
based interaction: a framework for post-wimp interfaces,”
in Proceedings of the SIGCHI conference on Human factors
in computing systems. ACM, 2008, pp. 201–210. 1

[3] D. A. Bowman, E. Kruijff, J. J. LaViola Jr, and I. Poupyrev,
3D user interfaces: theory and practice. Addison-Wesley,
2004. 1

[4] J. Ciger, M. Gutierrez, F. Vexo, and D. Thalmann, “The
magic wand,” in Proceedings of the 19th spring conference
on Computer graphics. ACM, 2003, pp. 119–124. 1, 2

[5] V. Khan, M. Pekelharing, and N. Desle, “Efficient naviga-
tion in virtual environments: A comparative study of two
interaction techniques: The magic wand vs. the human joy-
stick,” in Intelligent Human Computer Interaction (IHCI),
2012 4th International Conference on. IEEE, 2012, pp.
1–5. 1

[6] M. Henschke, T. Gedeon, R. Jones, S. Caldwell, and
D. Zhu, “Wands are magic: a comparison of devices used in
3d pointing interfaces,” in Human-Computer Interaction–
INTERACT 2013. Springer, 2013, pp. 512–519. 1

[7] A. Wilson and S. Shafer, “Xwand: Ui for intelligent
spaces,” in Proceedings of the SIGCHI conference on
Human factors in computing systems. ACM, 2003, pp.
545–552. 1, 2

[8] K. Litomisky, “Consumer rgb-d cameras and their applica-
tions,” University of California, Riverside. Ano, 2012. 2

[9] L. Cruz, D. Lucio, and L. Velho, “Kinect and rgbd im-
ages: Challenges and applications,” in Graphics, Patterns
and Images Tutorials (SIBGRAPI-T), 2012 25th SIBGRAPI
Conference on. IEEE, 2012, pp. 36–49. 2

[10] G. Bailly, D.-B. Vo, E. Lecolinet, and Y. Guiard, “Gesture-
aware remote controls: guidelines and interaction tech-
nique,” in Proceedings of the 13th international conference
on multimodal interfaces. ACM, 2011, pp. 263–270. 2

[11] M. Cabral, G. Roque, D. dos Santos, L. Paulucci, and
M. Zuffo, “Point and go: Exploring 3d virtual environ-
ments,” in 3D User Interfaces (3DUI), 2012 IEEE Sym-
posium on. IEEE, 2012, pp. 183–184. 2

[12] F. Guo, D. Kimber, and E. G. Rieffel, “Featured wand for
3d interaction.” in ICME, 2007, pp. 2230–2233. 2

[13] S.-H. Kang and C.-K. Yang, “Laser-pointer human com-
puter interaction system,” in Multimedia & Expo Workshops
(ICMEW), 2015 IEEE International Conference on. IEEE,
2015, pp. 1–6. 2

[14] A. D. Wilson, “Using a depth camera as a touch sensor,”
in ACM international conference on interactive tabletops
and surfaces. ACM, 2010, pp. 69–72. 4

[15] J. Kramer, M. Parker, D. Herrera, N. Burrus, and F. Echtler,
Hacking the Kinect. Apress, 2012. 4

[16] L. N. Trefethen and D. Bau III, Numerical linear algebra.
Siam, 1997, vol. 50. 4

[17] S. Mitra and T. Acharya, “Gesture recognition: A survey,”
Systems, Man, and Cybernetics, Part C: Applications and
Reviews, IEEE Transactions on, vol. 37, no. 3, pp. 311–
324, 2007. 5

[18] S. E. Ghirotti and C. H. Morimoto, “Um sistema de
interação baseado em gestos manuais tridimensionais para
ambientes virtuais,” in Proceedings of the IX Symposium
on Human Factors in Computing Systems. Brazilian
Computer Society, 2010, pp. 159–168. 5, 6

[19] J. O. Wobbrock, A. D. Wilson, and Y. Li, “Gestures without
libraries, toolkits or training: a $1 recognizer for user inter-
face prototypes,” in Proceedings of the 20th annual ACM
symposium on User interface software and technology.
ACM, 2007, pp. 159–168. 5, 6

[20] Y. Li, “Protractor: a fast and accurate gesture recognizer,” in
Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems. ACM, 2010, pp. 2169–2172. 5

[21] M. Kaltenbrunner, T. Bovermann, R. Bencina, and
E. Costanza, “Tuio: A protocol for table-top tangible user
interfaces,” in Proc. of the The 6th Intl Workshop on
Gesture in Human-Computer Interaction and Simulation,
2005, pp. 1–5. 5

SBC Journal on Interactive Systems, volume 6, number 2, 2015 29

ISSN: 2236-3297

