Dynamic Context Switching for Gaze Based Interaction

Antonio Diaz Tula*
University of Sdo Paulo, Brazil

Abstract

This paper introduces Dynamic Context Switching (DCS) as an ex-
tension of the Context Switching (CS) paradigm for gaze-based in-
teraction. CS replicates information in each context. The user can
freely explore one context without worrying about the Midas touch
problem, and a saccade to the other context triggers the selection
of the item under focus. Because CS has to display two contexts
simultaneously, the amount of useful screen space is limited. DCS
dynamically adjusts the context sizes, where the context that has
the focus is displayed in full size, while the other is minimized,
thus improving useful screen space. A saccade to the minimized
context triggers selection, and properly readjusts the sizes of the
contexts. Results from a pilot user experiment show that DCS im-
proves user performance and do not cause disorientation due to the
dynamic context resizing.

CR Categories: H.5.2 [Information Systems]: INFORMA-
TION INTERFACES AND PRESENTATION—User Interfaces
H.1.2 [Information Systems]: MODELS AND PRINCIPLES—
User/Machine Systems

Keywords: dynamic context switching, gaze based interaction,
selection by gaze

1 Introduction

Perhaps the most commonly used method to make selections in
gaze-based interfaces is dwell time. This approach use only fixa-
tions, hence is very simple and easy-to-use, but its main limitation
is the Midas touch problem [Jacob 1990]. Alternatives to dwell
time are continuous gaze gestures [Hansen et al. 2008; Ward and
MacKay 2002] and discrete gaze gestures [Huckauf and Urbina
2008; Wobbrock et al. 2008].

In [Stellmach et al. 2011] a touch-and-tilt device is used to make
selections along with a fisheye lens to enhance pointing, thus elim-
inating dwell-time activation. [Kumar et al. 2007] proposed a look-
press-look-release action to make a selection more fluid and ac-
curate. More recently, [Huckauf and Urbina 2011] introduced an
alternative method using antisaccades for selection.

Context Switching (CS) [Morimoto and Amir 2010] is an activa-
tion mechanism for gaze controlled interfaces that was suggested
as an alternative to dwell time. The method consists of two identi-
cal regions called “contexts”. To make a selection the user needs to
focus on the desired key within one of the contexts and saccade to
the other context. This method is comfortable and easy to learn due

*e-mail: diaztula@ime.usp.br
fe-mail: fmsc@ime.usp.br
fe-mail: hitoshi @ime.usp.br

Copyright © 2012 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions @acm.org.

ETRA 2012, Santa Barbara, CA, March 28 — 30, 2012.

© 2012 ACM 978-1-4503-1225-7/12/0003 $10.00

Filipe M. S. de Campos'
University of Sdo Paulo, Brazil

353

Carlos H. Morimoto*
University of Sdo Paulo, Brazil

to the use of a short fixation for focus and a single saccade for selec-
tion, which are natural eye movements, thus eliminating the Midas
touch problem. In addition, the users can naturally adjust their se-
lection speed without the use of an explicit button. Compared to
dwell time, CS clearly separates focus and selection, associating
focus to eye fixations and selection to saccades.

One major limitation of CS is that because two contexts must be dis-
played at all times, useful screen space is limited. This paper intro-
duces an extension to traditional CS: Dynamic Context Switching
(DCS). The purpose of DCS is to increase the useful screen space
by dynamically adjusting the size of the contexts. We conducted a
pilot user study to evaluate CS and DCS in terms of performance
for selection tasks.

The rest of the paper is structured as follows. Section 2 describes
DCS in more detail. Section 3 describes the experimental design.
Section 4 shows the experimental results and discussions, and Sec-
tion 5 concludes the paper.

2 Dynamic Context Switching

In CS objects are grouped within areas called contexts. When the
user looks at an object for a short time (typically 150 ms) the ob-
ject receives the focus. The selection of the key in focus is made
by saccading to the other context. To avoid unintentional switch of
contexts due to the noise of the eye tracker, there is a space in be-
tween the contexts called bridge. A saccade must completely cross
the bridge between the two contexts to make a selection.

A limitation of the method, that is also shared among other gaze
based interaction techniques such as [Ward and MacKay 2002;
Hansen et al. 2008], is the limited screen space left to display other
useful information. In [Morimoto and Amir 2010], the bridge has
been used to display the typed text. Because the technique requires
two contexts, each context must also be limited in size, since small
virtual keys are not appropriate for use with eye trackers.

The screen can be better used if the contexts can be resized. The
basic idea is that the context that receives the focus is maximized,
while the other context can be minimized, so the whole screen can,
in principle, display one context at a time. Because resizing may
cause disorientation, the contexts do not need to be fully maximized
or minimized, but their sizes can be adjusted dynamically, so that
the context that has the focus is bigger than the other one, thus
having more useful space than with fixed size contexts. As soon as
the user switch contexts, the size of the contexts must to be properly
updated.

Applications can benefit from DCS by presenting more items on the
screen than it would be possible with traditional CS. An example
is to have more keys in a DCS-based virtual keyboard, including
punctuation, numeric keypads and/or symbols. Another advantage
of DCS is that, because the keys can be made bigger, the interaction
becomes more robust to gaze tracking errors if both CS and DCS
have the same number of keys.

One concern about DCS is if it causes disorientation due to the
dynamic resizing, so that it could be slow or cause fatigue. To eval-
uate the benefits of DCS regarding speed and user experience, we
designed and conducted a longitudinal pilot experiment, described
in the next section.

J Y :
8 b

W L

o u |

2 Z

S f s K
Z D G 1
1 A u C
E H e U
4 B X M

Figure 1: 2, 3, and 4 column layouts used in the experiment.

3 Experimental Design

3.1 Space vs Speed

Assume that a context has the same density of keys per screen area
(in general defined by the accuracy of the eye tracker). If a DCS
context has twice the area of a CS context then it would hold twice
as many keys/objects. One way to make a CS-based interface with
the same number of keys is to have a paging mechanism.

To compare the speed of CS and DCS using the same number of ob-
jects, we used a task consisting of searching and selection of items
within a large collection, common in any search application such
as image retrieval (Flickr and Picasa), web search (Google), file
browsers (Finder) etc. Because we are interested in measuring per-
formance, we defined a task to select digits (numeric characters)
from a set of alphanumeric characters (lower and upper case letters
from the English alphabet). This task helps to keep the cognitive
load to a minimum so that the participants could focus on the in-
teraction, and allows a fair comparison of the methods using large
collections of data, since it requires the users to browse across sev-
eral pages to complete the task.

We used three different methods for the experiment: a traditional
CS layout with 2 columns (2C), and two DCS layouts with 3 and 4
columns (3C and 4C) respectively, all having 5 rows. The size of
the keys were kept the same for all layouts. This way we guarantee
that the accuracy of the eye tracker interferes with the speed of all
layouts about the same way. Nonetheless, the size of the keys were
large enough to avoid noise in key focusing and selection. The size
of the bridge was kept the same for all layouts to guarantee a min-
imum saccade distance to all methods and layouts. Figure 1 shows
the 3 different layouts that were developed for the experiment.

The task consisted of selecting a random number of digits uni-
formly distributed within the interval [18, 28] from a collection of
120 characters. This number of characters can be displayed using
12 full pages for 2C, 8 pages for 3C and 6 pages for 4C. Because the
number of digits is random for each trial, users are always required
to browse all pages.

Simple gaze gestures were used to browse pages. Markers dis-
played around the contexts were used to activate page up and page
down. A gesture consisted of looking from the context to the
marker and then back to the context, similar to [Ohno 1998].

3.2 Experimental Protocol

A total of 6 people participated in our pilot experiment, all male,
able-bodied, with normal or corrected to normal vision. Two par-
ticipants had no previous experience with eye trackers, two had lit-
tle experience with other gaze based applications, and the other two

354

had large experience. Before the first session the participants were
interviewed and introduced to the experiment, and signed a consent
form. A training session, about 10 minutes long, was performed by
all users in order to learn the task and operate the gaze interface.

All volunteers participated in 6 sessions that last about 15 minutes
each. In every session, the participant had to perform 9 trials, 3 for
each layout. In every trial, the user was told to select the digits as
fast as possible, and to be careful not to leave digits unselected. The
order of the layouts presented to the user at each session changed
randomly. A session could not be repeated within 30 minutes, so
that most volunteers took 2 or 3 days to complete their sessions.

If a participant lost calibration during a session, results of that trial
were discarded and the user repeated the trial. Still there where
cases when a trial could not be repeated because of the participant’s
schedule, so fewer trials were considered for those participants in
the data analysis. At the end of the experiment participants were
interviewed and answered a questionary about their impressions of
the interaction using the three layouts.

3.3 Implementation Issues

A low-cost pupil-corneal reflexion remote eye tracker was used dur-
ing the experiments. The eye tracker runs at 30Hz and has about 1°
accuracy. A short dwell time of 150ms was used for detecting fo-
cus on a virtual key, and the maximum time for selection by context
switching (i.e. maximum duration for the saccade) was set to 450
ms for 2C and 3C, and to 550 ms for 4C (because on average 4C
requires a longer saccade).

Users could select and deselect items, so it was easy to correct any
wrong selection at any time during the experiment. Deselection
procedure is similar to regular selection: just focus on a selected
item and switch to the other context.

Selections (and deselections) are made using horizontal saccades,
that are faster and more natural than vertical ones. Visual feedback
is provided for the context that has the user focus by displaying a
green border. Regular keys (characters in a context that could be
selected) were painted light blue, indicating that they were not se-
lected. After selection, the selected keys were painted green in both
contexts. A blue key turns yellow when it receives the focus (gaze),
indicating that it can be selected, and a green key turns orange when
it receives the focus, indicating that it can be deselected.

The bridge is used to list the current selected items. When the user
looks at this area for at least 500 ms, it gets the focus (as in Figure
1 4C). In this case, no selection is made when the focus returns to
the left or right context. In our current implementation, no action is
permitted within the bridge.

3.4 Data Analysis

To compare the selection speed of CS and DCS we separate the
time users dedicated to selection from the time spent for paging.
For every page in a task we consider the selection time from the
moment the user enters a page to the last selection within that page,
and the paging time as the remaining time from the last selection to
the execution of a paging action. Because each page could have a
different (random) number of digits, for every page we computed
the selection time per digit (STPD) as the selection time divided by
the number of actual selections on that page.

To compare the overall user performance per task, that includes the
selection and paging time, we computed the fotal time (TT) as the
time from the beginning of the task to the last selection in the last

page.
For a given trial, let nPages be the number of visited pages, T'P
the number of digits actually selected (true positives), F'P the num-
ber of non-digits selected (false positives), and F'N the set of miss-
ing digits (false negatives). To evaluate the users performance for
each method the following metrics are used:

Precision: P =TP/(TP + FP)
Recall: R=TP/(TP+ FN)

1

® nPages

Average selection time: AST = > STPD

Average task time: ATT =TT /(TP + FP)

Precision and recall tell us how careful the user was at the selection
task. A precision under 100% reveals the selection of a few letters,
while a recall under 100% reveals that the user missed some digits.

AST is the mean of the ST P D for all pages. Pages with no selec-
tion were not taken into account. AST" measures how fast a person
can make a selection, independently of the number of pages.

ATT is the average task time considering the time for paging.
ATT measures how fast the task can be completed, including se-
lection and paging. We expect that selection is faster using simpler
layouts, but the overall completion time may be better using more
complex layouts.

4 Experimental Results

Table 1 shows the results of the grand mean of P and R for all
users, for the 3 methods over the 6 sessions. Figures 2 and 3 show,
respectively, the results of the grand mean of AST and AT'T for
all users, for the 3 methods evaluated in the 6 sessions.

4.1 Discussion

The results from the Table 1 of P and R show that the participants

were equally careful for all methods during the experiments. In
particular, the grand mean for P and R are similar for all methods in

Table 1: Grand mean for Precision and Recall for all sessions

Session
Method 1 2 3 4 5 6
2C 99.1 981 994 993 987 994
P 3C 98.1 995 994 995 998 99.3
4C 98.8 993 994 100 994 99.7
2C 97 96.6 98.2 97 98.7 98.1
R 3C 944 973 972 982 989 097.1
4C 97.6 94 98.1 98.6 983 96.1

355

Avg Selection Time [ms]: Grand Mean

e—e 2 Cols |
~ ; ; : +-+ 3 Cols
= =< 4 Cols H

1800 -+,

1600

1400 |-

1200

1000

H H H H
1 2 3 a 5 6
Session

Figure 2: Grand mean for Average Selection Time (AST).

Avg Task Time [ms]: Grand Mean
5000 T T T

e—e 2 Cols
+ =+ 3 Cols ||
= =< 4 Cols

4500

4000

3500 -

3000 F

Avg Task Time [ms]

2500 -

2000 -

1500

Session

Figure 3: Grand mean for Average Task Time (ATT).

all sessions. Observe that most of the precision values are very close
to 100%, i.e., most of the time only digits were selected. The most
common selected letter (false positive) was the lowercase letter ”a”,
two times by users 2 and 6 and one time for user 4, respectively. We
have expected the letter O to be mistaken by a zero, but that did not
happen.

The values of recall are somewhat worse than precision, i.e., it was
very common, among all participants, to miss a selection. One pos-
sible explanation for misses is that, some participants, trying to fin-
ish the task as fast as possible, scanned just one column of a context,
trying to find digits in nearby columns using their periphery vision.

We can observe from Figure 2 that the grand mean of AST for
2 columns is considerably faster than for 4 columns, and a bit
better than for 3 columns over all sessions. A pairwise t-test
shows that there was a significant difference between 2C and 3C
(t(5) = 4.49,p = .01), between 2C and 4C (¢(5) = 13.76,p = 0)
and also between 3C and 4C (¢(5) = 7.80,p = 0).

This is expected since for 2C the average saccade distance is lower
than for 3C and 4C using the same bridge distance, and there is
a relationship between saccade amplitude and duration. Exploring
the entire context for 2C is also faster than for 3C and 4C (because
of the fewer number of keys), which could also justify the faster 2C.

The 4C layout shows the worst time. A possible reason is that be-
cause with 4C saccades are longer when selecting items close to the
vertical screen edges, sometimes the participants ended the saccade
in the central area and had to repeat the selection process. This can
also be a result, noticed by some participants, that occasionally the
interface had a small delay to respond to context switching. We
believe this problem to be an implementation issue, since the inter-
face was implemented in Java/Swing, with 4C there are more keys
to resize after every context switch than with 2C and 3C.

When we consider the ATT, as seen in Figure 3, the 3C layout
is faster than 4C, which in turn is a little better than 2C. A pair-
wise t-test shows there was a significant difference between 2C
and 3C (¢(5) = 4.11,p = .01) and also between 4C and 3C
(t(5) = 7.50,p = 0), however there was not significant difference
between 2C and 4C (¢(5) = 2.56,p = .05).

This can be explained because 3C and 4C requires less paging than
2C, which reveals that the time spent for paging was significant in
the overall performance of the interface. Assuming that each user
spent a constant time to switch pages (since the paging procedure
was the same for all methods), the results reveal that it is preferable
to use DCS to place more items and have less paging, instead of
using CS with more paging to hold the same amount of selectable
keys/objects.

4.2 Subjective evaluation of DCS

Subjective evaluation of the participants were consistent with the
quantitative results: the 2C and 3C received the same evaluation
regarding perceived speed. Only one user perceived the 4C as the
second faster. The 2C method was evaluated as the simplest to use
by all participants. One participant with previous experience in eye
tracking said that with 3C it was easier to use peripheral vision to
quickly explore a context and also was more comfortable to use
than with the other two methods.

Participants were asked about how easy it was to select using CS
and DCS. In a Likert scale from 1 (very hard) to 5 (very easy), the
average response was 4.7, i.e., the participants found it very easy to
make selections using both CS and DCS. Regarding context resiz-
ing, none of the participants found it disorienting. This can be ex-
plained by saccadic suppression (or masking): the inability to per-
ceive whether a target has moved or not during a saccade [Bridge-
man et al. 1975].

5 Conclusion

This paper introduced the concept of Dynamic Context Switching
(DCS) as an extension of the traditional Context Switching (CS)
paradigm for gaze-based interaction. Like CS, DCS has two repli-
cated contexts, but the context that has the focus is displayed in full
size, while the other one is reduced. A short fixation is used to de-
tect focus within the maximized context, and a saccade to the other
context triggers the selection and dynamically adjusts the sizes of
the contexts. Therefore in CS and DCS, focus is controlled by fixa-
tions, and selections by saccades. DCS allows a better use of screen
space and can improve the robustness of the system to gaze track-
ing noise. A region between the contexts, the bridge, is required to
avoid unintended selections.

We have conducted a pilot user experiment with 6 participants to
compare the performance of a 2 column fixed CS layout, 3 column
and 4 column DCS layouts in a selection task, using simple gaze
gestures for switching pages. Experimental results show that DCS
improves user performance for the 3 column layout, but further ex-
periments needs to be done to verify the usability of the 4 column

356

layout, due to implementation issues that were revealed during the
pilot experiment. The participants do not feel disoriented by the
constant resizing. Actually, some have not even noticed the resiz-
ing. This can be explained due to saccadic masking phenomenon
which suppresses our visual perception during saccades. All users
felt DCS to be comfortable and easy to learn.

Acknowledgements

We thank Fundacdo de Amparo a Pesquisa do Estado de Sao Paulo
(FAPESP) for the financial support.

References

BRIDGEMAN, B., HENDRY, D., AND STARK, L. 1975. Failure
to detect displacement of the visual world during saccadic eye
movements. Vision Research 15,6, 719-722.

HANSEN, D. W., SKOVSGAARD, H. H. T., HANSEN, J. P., AND
M@LLENBACH, E. 2008. Noise tolerant selection by gaze-
controlled pan and zoom in 3d. In Proceedings of the 2008
symposium on Eye tracking research & applications, ACM, New
York, NY, USA, ETRA °08, 205-212.

HUCKAUF, A., AND URBINA, M. H. 2008. Gazing with peyes: to-
wards a universal input for various applications. In Proceedings
of the 2008 symposium on Eye tracking research & applications,
ACM, New York, NY, USA, ETRA 08, 51-54.

HUCKAUF, A., AND URBINA, M. H. 2011. Object selection in
gaze controlled systems: What you don’t look at is what you
get. ACM Trans. Appl. Percept. 8 (February), 13:1-13:14.

Jacos, R. J. K. 1990. What you look at is what you get: eye
movement-based interaction techniques. In Proceedings of the
SIGCHI conference on Human factors in computing systems:
Empowering people, ACM, New York, NY, USA, CHI °90, 11-
18.

KUMAR, M., WINOGRAD, T., PAEPCKE, A., AND KLINGNER, J.
2007. Gaze-enhanced user interface design. Technical Report
2007-20, Stanford InfoLab, April.

MORIMOTO, C. H., AND AMIR, A. 2010. Context switching for
fast key selection in text entry applications. In Proceedings of
the 2010 Symposium on Eye-Tracking Research & Applications,
ACM, New York, NY, USA, ETRA 10, 271-274.

OHNO, T. 1998. Features of eye gaze interface for selection tasks.
In Mahallas in Uzbekistan. Aline Coudouel, Sheila Marnie and
John Micklewright, IEEE Computer Society Press, 176—181.

STELLMACH, S., STOBER, S., NURNBERGER, A., AND
DACHSELT, R. 2011. Designing gaze-supported multimodal
interactions for the exploration of large image collections. In
Proceedings of the 1st Conference on Novel Gaze-Controlled Ap-
plications, ACM, New York, NY, USA, NGCA ’11, 1:1-1:8.

WARD, D. J., AND MACKAY, D. J. C. 2002. Fast hands-free
writing by gaze direction. CoRR c¢s.HC/0204030.

WOBBROCK, J. O., RUBINSTEIN, J., SAWYER, M. W., AND
DucHowsKI, A. T. 2008. Longitudinal evaluation of discrete
consecutive gaze gestures for text entry. In Proceedings of the
2008 symposium on Eye tracking research & applications, ACM,
New York, NY, USA, ETRA "08, 11-18.

