GInX - Gaze Based Interface Extensions

Thiago S. Barcelos

Carlos H. Morimoto*

Departamento de Ciéncia da Computagdo - IME/USP
Rua do Matdo, 1010 - Sao Paulo, SP 05508-090 - Brazil
{barcelos,hitoshi } @ime.usp.br

Abstract

This paper introduces the Gaze based Interface Extensions (GInX)
architecture designed for the development of eye-gaze enhanced at-
tentive interfaces. The architecture is composed of 3 modules, the
domain, user, and attentive modules. In the absence of informa-
tion about the user and the domain, the attentive module controls
the cursor using gaze and target position information alone. The
cursor control can be refined in an attentive way [Vertegaal 2002]
as more information about the application and the user are added.
The system currently offers 3 different operation modes: Latency,
MAGIC, and GInX default mode. In the Latency mode, the cur-
sor position is controlled by gaze and selection is done using dwell
time. MAGIC Pointing [Zhai et al. 1999] was suggested to com-
bine the speed of eye tracking with the accuracy of manual pointing
devices. GInX extends the concept of Magic Pointing by intro-
ducing information about the user and application context in order
to eliminate the time required for cursor reacquisition and position
adjustment inherent in the original MAGIC Pointing interface. A
prototype of GInX was implemented and used to compared the per-
formance of all these 3 modes with a mouse. Our experiments show
that GInX outperforms MAGIC Pointing, although the mouse has
the best performance overall.

CR Categories: 1.2.10 [Artificial Intelligence]: Vision and Scene
Understanding; H.1.2 [Models and Principles]: User/Machine sys-
tems

Keywords: Gaze aware interfaces

1 Introduction

Current eye tracking technology still presents a few drawbacks
when used as an alternative input mode to computer interfaces [Ja-
cob 1993]. Preliminary attempts to use eye-gaze as a pointing de-
vice were limited by the eye physiology. The one-degree pointing
precision due to constant micro saccades and the fovea size show
that the eye has not evolved to be a manipulation tool. Besides,
most eye trackers still require a previous calibration session to be
performed by each user per each session. Because of the calibration
model used, one’s head must be kept still during system utilization.

In spite of these problems, the use of eye-gaze as an input mode for
computer interfaces is particularly attractive due to the possibility
of creating faster interfaces, while reducing fatigue and potential
injury caused by operating keyboards and mice, and allowing inter-
action during situations that prohibit the use of hands, such as while

*We would like to thank FAPESP (Fundacdo de Amparo a Pesquisa do
Estado de Sdo Paulo) for their financial support.

Copyright © 2008 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions@acm.org.

ETRA 2008, Savannah, Georgia, March 26—28, 2008.

© 2008 ACM 978-1-59593-982-1/08/0003 $5.00

149

driving a car. A natural first solution is to use EGTs as control in-
put devices to create a ”what you look is what you get” interaction
paradigm, where pointing is driven directly by eye-gaze, and selec-
tion by dwell time [Jacob 1993].

Pointing and selection tasks using eye-gaze data introduce a prob-
lem known as the "Midas touch”, i.e., everything you look at the
computer screen may become eye activated. Several mechanisms
have been proposed to overcome such problems but, as described
in [Zhai et al. 1999], there are two fundamental shortcomings re-
garding the direct use of eye-gaze data as a control mechanism.
First, due to the nature and behavior of the eye and its movements,
the accuracy of EGTs will hardly achieve the accuracy required by
current pointing tasks in common computer interfaces. Second, the
eye evolved as our primary perceptual input, subject to voluntary
and involuntary movements, thus loading this primary sensory in-
put channel with a motor control task must be done very cautiously
if at all. But if eye-gaze may not be appropriate for direct manipu-
lation tasks, could it still be used to facilitate such tasks?

The MAGIC (Manual And Gaze Input Cascaded) Pointing pro-
posed by Zhai et al. [Zhai et al. 1999] presents a natural way of
combining the accuracy of common pointing devices with the speed
of eye movements. To understand how MAGIC Pointing works,
consider a common pointing task, where the user looks at a target
position, then looks for the current cursor position, and physically
moves the mouse (or uses other pointing device such as a touchpad
or trackpoint) to place the cursor over the target. If initially the user
is not holding the mouse, it is also very common not to know the
current cursor position, so time is spent finding the cursor in order
to place it over the target. The initial mouse motion can be consid-
ered as a hard evidence that the user wants to move the cursor, and
therefore the eye-gaze data can be used to warp the cursor instanta-
neously to a previous recent fixation, which in general corresponds
to the target position, so the cursor “magically” appears over the tar-
get, without the need to find the cursor or move it at all across the
screen. When the user is holding the mouse, the eye-gaze data can
be used to warp the cursor when the eye is fixating a point distant
from the current cursor position and the mouse is moving toward
the target, therefore saving the time required to drag the mouse.

The next section introduces GInX, the Gaze based Interface Exten-
sions, which is a flexible 3 module architecture designed to facili-
tate the development of gaze enhanced applications, and we show
that this architecture fits well within the paradigm of attentive inter-
faces. We have designed an experiment to compare the performance
of the 3 operation modes available in GInX using a Fitt’s pointing
task. Section 3 defines the experiment and Section 4 presents the
results obtained from 26 subjects. Section 5 concludes the paper.

2 Gaze Based Interface Extensions

The idea behind MAGIC Pointing is to enhance manual devices
with the speed of eye movements, combining the strengths of these
two input modes, and minimizing each other’s weaknesses. The
cursor is controlled by the manual input device for fine accurate
movements, and by the EGT for rapid large cursor displacements
that might not be very accurate. One limitation of MAGIC Pointing

is that the cursor can be warped anywhere, even into empty areas,
so that the user must spend some time reacquiring the cursor before
moving it towards the target.

A typical computer application in a WIMP interface requires the
user to point at and click on selected targets, such as buttons, icons,
scroll bars, etc, to complete a task. Because MAGIC Pointing warps
the cursor to a screen coordinate defined by the point of regard as
defined by the EGT, with or without an offset, the user may be
required to manually adjust the cursor position quite often.

2.1 Context Information and Target Acquisition

When analysing the task of acquiring a target, one of its sub tasks
is the visual search for the target. At this point, the gaze position
information provided by eye trackers can be used to speed up the
task. Glenstrup and Engell-Nielsen [Glenstrup and Engell-Nielsen
1995] used the keystroke-level model developed earlier by Card,
Moran and Newell to argue that some amount of time necessary to
complete the task can be saved. The following equation shows a
simplified version of the model, where T ccute is the time neces-
sary to complete a pointing task with a mouse:

Te:cecute = T]WT + TEye + TM + TR (1)

Where T stands for the time required for mental operations,
Trye represents the time necessary for visually searching the tar-
get, T is the time necessary for manual operations (moving the
mouse and performing mouse clicks) and T'r is the elapsed time
for the system response. In this model, if eye gaze tracking is used
to help the pointing task, T/ can be in theory eliminated and Tr
can be replaced by the T’r/, the time it takes for the system to re-
spond to target selection.

We know that this model is not precise. Skilled users can start the
mouse movement in the right direction even before they look at
the target. Besides, the anatomical properties of our eyes give us
indication that completely eliminating the manual operations can
overload the eyes with a manipulation task they are not prepared
to. Apart from this limitations, the model can provide a reasonable
approximation to selection time and justify our efforts in applying
eye tracking to accelerate target acquisition tasks.

Because eye tracking technology is still far from perfect, due to cal-
ibration errors for instance, a user can be looking at a target and the
eye tracker can report a gaze position that is not on the target, but
(hopefully) close enough to it. At this point, when target position
is available to the eye tracking system, the target can be used as a
reference point to attract” the reported gaze point. In [Sibert and
Jacob 2000] Sibert and Jacob described a proprietary test applica-
tion for evaluating eye gaze as an object selection method. Raw
data from the eye tracker was filtered to identify useful events, such
as eye fixations and saccades. Even if the eye tracking precision
is affected by input noise or calibration imprecision, their system
reports a target selection if the given gaze point is close enough to
a target.

These ideas can be applied to a real WIMP interface, which are the
standard in desktop systems today. From everyday interaction with
these interfaces, users got used to dealing with widgets, or controls.
All accomplished tasks involve dealing with text boxes, icons and
buttons. Therefore, when decomposing a task in a sequence of sub
tasks, it is highly likely that one of these sub tasks will be “select
widget X, or "point to widget Y. Users are constantly operating
their pointing devices to acquire targets, and most of the time those
targets are the widgets.

150

So, when dealing with WIMP interfaces, incorporating information
about widgets (for instance, widget position information) in a gaze-
assisted pointing system is a reasonable strategy to enhance inter-
action speed and comfort. We can identify the following potential
advantages of such a technique:

e Decrease of manual cursor adjustment. When the user looks
at a widget, warping the mouse cursor over a convenient po-
sition of the widget can reduce the necessity of moving the
mouse to the exact clicking position.

e More comfortable interaction. When the mouse is warped to
a exact position, users feel that they really hit the target”, or,
in other words, they feel that the eye tracking system is really
precisely responding to their commands.

o [ncreased predictability. After a few times using the new sys-
tem, users may get used to the fact that the mouse will appear
over the widget. When users get to predict the system behav-
ior in advance, their performance can be even better.

22 GInX

Gaze based Interface Extensions (GInX) extends the MAGIC Point-
ing idea by combining context information about the interface wid-
gets, task, and the user. For instance, GInX might use information
about current active widgets to warp the cursor, potentially saving
the time required to reacquire the cursor and fine positioning it with
the manual pointing device.

Another contribution of our work is the modular design of the ex-
tensions that can be turned on/off to change the behavior of the
module, or trained to create new behaviors in different tasks. For
example, the user or application can select the prefered operation
mode for each particular context. Figure 1 shows a block diagram
of the GInX architecture. The domain module contains information
about the task being performed by the user which is application de-
pendent. The user module keeps information about the user state,
preferences and behaviors. The attentive module receives gaze data
and information from the other modules to compute an expected
target. If this target differs from the user selected target, the user
model can be refined.

@ Attentive Domain
Module Module
Expected =
Target 5
/ 3
£
3
warp : update
Difference
User
User Module
Interface Selected
Target

Figure 1: Block diagram of GInX architecture.

This 3 module architecture is quite flexible and can be used as an
attentive interface [Vertegaal 2002]. An attentive interface dynami-
cally prioritizes the information it presents to its users according to
context information, such that information processing resources of
both user and system are optimally distributed across a set of tasks.
Vertegaal [Vertegaal 2002] suggests the classification of different
types of attentive interfaces based on their ability to monitor the
user’s attentive state, the kind of measurements used by the sensing
technology, and the way in which an attentive system may increase

or decrease the load of the user, system or network. GInX architec-
ture does not require the explicit definition of the user and domain
modules, so that it can benefit current non-gaze enhanced applica-
tions as well. When such modules are available, they may overwrite
the default behavior of GInX, optimizing it to their needs.

3 Experimental Design

The performance of the MAGIC Pointing system was compared
to a touchpad using a Fitts’ pointing task. Subjects were asked to
point and click at targets appearing in random order. To test the
performance of the 3 operation modes of GInX, we use a similar
test with a grid of targets. The task is to click at the highlighted
target on the grid (see Fig. 2).

Fitts law establishes that the time to accomplish a pointing task in-
creases with the amplitude of the motion and decreases with the
size of the target according to the following equation:

T =a+blog,(24/W) 2)
where T is the time to complete the task, A is the amplitude of
the movement, W the size of the target, and a and b are empirical
constants that can be computed using linear regression techniques.
The term 2A/W is usually called index of difficulty of the task, and
b is known as the index of performance. In [Mackenzie et al. 1991]
it is shown that using A/W + 1 as the index of difficulty results in
a better fit to the data.

In the original MAGIC Pointing experiment the size of the targets
(W) and the distance (A) were varied. In our experiment, three
target sizes were used. Because the accuracy of the EGT is around
1 degree, our smallest target was chosen to be about 1 degree, the
medium size target 2 degrees, and the large target to be about 4.5
degrees of visual angle. The amplitude was varied by selecting a
target within the grid that was at an appropriate distance. Three
distances was used for testing, Scm, 10cm, and 20cm, distributed
within a 20cm X 30cm display area. One last parameter that highly
influences the error rate of the pointing task is the grid size, i.e.,
the distance between targets in the grid. Three grid sizes was also
used in our experiments, Ocm, 2cm, and 4cm. Figure 2 shows an
example of a screen used during testing.

Figure 2: Sample screen used during testing

The typical distance of the user to the monitor screen was about
50cm. Each subject was asked to click on the highlighted target
as fast as possible. By combining the target size, grid size and
amplitude, 9 different screens were generated. For each screen, 15
random targets were selected.

The architecture offers 3 modes of operation: Latency, MAGIC and
GInX. The first mode is a simple dwell time eye pointing and se-
lection interface, where gaze data is used for pointing, and the se-
lection is made by fixating the gaze over the desired target over
a certain period of time (we used 250 ms). A 10 minute training

151

Input Mode a [ms] | b[ms/bit] | IP [bits/s]
Mouse 455 160 6.2
Liberal GInX 769 99 10.1
Conservative GInX 868 129 7.7
Liberal MAGIC 800 110 9.1
Conservative MAGIC 901 127 7.8
Dwell time 694 8 125

Table 1: Coefficients of the linear regression to Fitt’s Law.

session before the test was allowed for each user to practice with
MAGIC Pointing, GInX and the Latency interaction modes.

1500 —

fouse —o—i
Latency +—+—1
1400

13e@ -

T R o I Magic Con . ==

12@@ -
110@ |

100

Time [ms]

900 |
800 | —-.
700 |

s0a L - - - - - - -
-1 [1 H 3 4 5 3

Distance [cm]

Figure 3: Time to complete the task as a function of the grid size.
The vertical bars correspond to a confidence of 95% around the
mean.

4 Experimental results

All subjects were briefed at the beginning of the session. A total
of 26 college students participated in the experiments. The average
computer experience of the group was about 10.3 years. Figure 3
shows the time to complete the task as a function of the grid size.
Observe that the grid size has a significant impact on the completion
of the task. Both MAGIC and GInX require some space between
targets in order to become useful. Although GInX seems to perform
a little better, this result is not statistically significant.

Figure 4a shows the lines computed from linear regression of the
data to Fitts” Law. As in the original MAGIC experiment, the man-
ual device outperforms the other modalities, although the index of
performance of the MAGIC and GInX modalities are better than
the mouse. The coefficients for these lines are shown in Table 1.
This table shows that the performance results for MAGIC Pointing,
GInX and the mouse are similar. The mouse has the worst IP (index
of performance) of 6.2 bits/s. Latency has a high IP, but the number
of errors is unacceptable for small grid distances. But as long as the
target distances are kept within limits, the time to complete the task
is almost constant. This result is expected due to the velocity of the
eye-gaze. Also as expected, the IP of GInX is a little superior than
that of MAGIC.

The users also answered a questionnaire at the end of the exper-
iment for subjective evaluation, according to the criteria of Easy
of Use, Speed, and Comfort. The results are presented in Fig. 4b.
According to these results, the preferred mode was the dwell time,
for its speed, although some subjects complained about the Midas
touch problem.

1800 .
Mouse —é
Latency

16@@

GInX Lib =
1488 |

L=
- - -
w 1zee | P
& o -
2 - e
= L ~
Footeee | - e
1 g -
o s
see ¥~ A
r =
e
600 | /
"
400 L 1 1 1 1 1 L J
2 1 2z 3 4 5 [7
ID [bits]
@
2.5 -
Comfort
Speed
2}
1.5
1}
| |
1 | k
0.5 | [1 :
| | | |
IS i S — S
: 1 T
| |
2.5 | |
! i
-1}
15t
2L 1 1 1 1 1 J
GInX Lit GInX Con Magic Lib Magic cen Latency

Figure 4: a) Lines computed from linear regression of the data, and
(b) Results from the subjective evaluation.

The Liberal MAGIC and GInX were also well evaluated, with a
slight preference for GInX. They both were reported to be easy to
use. The conservative modes received negative evaluations though.
The conservative MAGIC was the worst modality according to the
subjects.

The widget selection routine does not add any significant overhead
to the eye tracking system, as it continues to run at approximately
30 frames per second. The user is able to point at widgets as soon
as the window is shown on the screen. Still some limitations due to
the current eye tracking technology precision were noticed: when
widgets are too close (like, for instance, the standard OK and Can-
cel buttons in most dialogs) the user is not able to make the system
differentiate between the two. Surprisingly, a couple of users who
were allowed to freely explore the system for more than 10 minutes
found a strategy to differentiate between such close buttons: they
looked to one button, than fixated at a spot far away from the button
area (normally the opposite side of the screen) and then fixated at
the other button. Future experiments can show if this pattern could
be adopted by other users in a more controlled experiment.

The preliminary tests indicated that different widget design and po-
sitioning techniques may arise to produce applications that are bet-
ter suited to respond to gaze input. For example, bigger widgets
and alternates between opposite screen sides seem to avoid some
of the limitations of current eye tracking technology. A similar
technique was used by Wang, Zhai and Su [Wang et al. 2001] in

152

the development of a Chinese language input system that combines
the keyboard with MAGIC Pointing. Buttons are displayed in two
rows for the user to select one of many Chinese characters. Instead
of aligning the buttons in two rows, they grouped the buttons in a
‘W’ shape order to minimize selection errors.

5 Conclusion

The Gaze based Interface Extensions (GInX) is a flexible architec-
ture that facilitates the development of gaze enhanced attentive ap-
plications. The system was fully integrated with the Linux operat-
ing system with an eye-gaze tracker. The domain module is defined
using the list of active widgets provided from the window manager,
for the active window. The user module currently only records the
fixations in time, so that the application can collect eye behaviors
and act upon certain patterns such as reading, or searching. The
attentive module currently offers three gaze operation modes: La-
tency, MAGIC pointing, and the GInX default mode. When in the
Latency mode, pointing is directly controlled by the user’s gaze,
and selection is performed by dwell time. Magic Pointing natu-
rally integrates the speed of eye movements with the fine precision
of current pointing devices. GInX architecture allows to extend
the concept of Magic Pointing (and latency as well), by introduc-
ing information about the user and application context in order to
eliminate the time necessary for cursor reacquisition and position
adjustment inherent in the original MAGIC Pointing interface.

This prototype allows any application under Linux to be used with
any of the 3 gaze operating modes. We have designed and con-
ducted user experiments to evaluate the performance of these modes
and compare them with the mouse. The results show that GInX
and MAGIC have a better index of performance than the mouse,
meaning that they behave better for more difficult pointing tasks,
although the mouse still outperformed both techniques. Although
most subjects liked the Latency mode due to its speed, our results
show that they are not appropriate for complex interfaces. Subjec-
tive results also showed that the users liked the liberal modes of
MAGIC and GInX operation modes, due to their comfort. They
also report that these modes seem faster than the mouse, though the
results prove that they are not.

References

GLENSTRUP, A., AND ENGELL-NIELSEN, T. 1995. Eye Con-
trolled Media: Present and Future State. Master’s thesis, Uni-
versity of Copenhagen DIKU (Institute of Computer Science),

Universitetsparken 1 DK-2100 Denmark.

JAacoB, R. 1993. What you look at is what you get. [EEE Computer
26,7 (July), 65-66.

MACKENZIE, 1., SELLEN, A., AND BUXTON, W. 1991. A
comparison of input devices in elemental pointing and dragging
tasks. In Proc. ACM SIGCHI - Human Factors in Computing

Systems Conference, ACM, 161-166.
SIBERT, L., AND JACOB, R. J. K. 2000. Evaluation of eye gaze in-

teraction. In Proc. ACM SIGCHI - Human Factors in Computing

Systems Conference, ACM, 281-288.

VERTEGAAL, R. 2002. Designing attentive interfaces. In Proc.
of the Eye Tracking Research & Applications Symposium, ACM,
23-30.

WANG, J., ZHAI, S., AND Su, H. 2001. Chinese input with
keystroke and eye tracking. In Proc. ACM SIGCHI - Human
Factors in Computing Systems Conference, ACM, 349-356.

ZHAI, S., MORIMOTO, C., AND IHDE, S. 1999. Manual and

gaze input cascaded (magic) pointing. In Proc. ACM SIGCHI -
Human Factors in Computing Systems Conference, ACM, 246—
253.

