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Abstract When first introduced, the cross-ratio (CR) based
remote eye tracking method offered many attractive features
for natural human gaze-based interaction, such as simple
camera setup, no user calibration, and invariance to head
motion. However, due to many simplification assumptions,
current CR-based methods are still sensitive to head move-
ments. In this paper, we revisit the CR-based method and in-
troduce two new extensions to improve the robustness of the
method to head motion. The first method dynamically com-
pensates for scale changes in the corneal reflection pattern,
and the second method estimates true coplanar eye features
so that the cross-ratio can be applied. We present real-time
implementations of both systems, and compare the perfor-
mance of these new methods using simulations and user ex-
periments. Our results show a significant improvement in
robustness to head motion and, for the user experiments in
particular, an average reduction of up to 40 % in gaze esti-
mation error was observed.

Keywords Eye tracking · Gaze tracking · Remote eye gaze
tracking · Head movement tolerance · Free-head motion ·
Cross-ratio · Homography

1 Introduction

Natural human interfaces can benefit from eye movement
information (Duchowski 2003). Several methods have been
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developed to track eye movements as described in Morimoto
and Mimica (2005); Villanueva et al. (2008); Hansen and Ji
(2010). Since we are primarily interested in the use of eye
trackers for interactive applications our focus is on devices
that are non intrusive and remote. This way, devices that use
special contact lenses (Robinson 1963) or electrodes around
the eyes (Kaufman et al. 1993) are less interesting, since
they require preparation before use and use for long periods
of time can be uncomfortable.

Camera based devices overcame these limitations, spe-
cially those that use remote configurations, i.e., where the
user does not need to wear or to be in contact with any kind
of equipment. For natural human interaction, it is also desir-
able to have remote eye trackers that allow free head move-
ment, which improve usability and comfort.

In general, camera based devices capture and process im-
ages of a person’s eye. During image processing, relevant
eye features are detected and tracked, and used to compute
the point of regard (PoR). Typical eye features used are the
iris and pupil borders, eye corners, and corneal reflections
generated by light sources (active illumination) (Villanueva
et al. 2008).

Remote eye gaze tracking methods can be classified into
two groups (Hansen and Ji 2010): interpolation based meth-
ods and model based. Interpolation based methods map im-
age features to gaze points. Model based methods estimate
the 3D gaze direction and intersection between scene ge-
ometry and gaze direction is computed as the PoR. Sys-
tem requirements of interpolation based methods tend to
be smaller than model based methods but head movement
is restricted. Model based methods, on the other hand, of-
fers greater freedom of movement though they require more
complex system setup.

Cross-ratio (CR) based methods combine advantages
from both interpolation and model based methods: they
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do not require system calibration and they allow free head
motion. Unfortunately, due to simplifications assumed by
many implementations of the method, the performance of
the method might be limited in accuracy or robustness to
head movement.

The next section briefly describes common methods for
remote eye tracking and revisits the basic solution proposed
by CR method as well as newer extensions currently pre-
sented in the literature. Section 3 discusses some head move-
ment tolerance issues related to current CR based methods
that motivated the development of this work. Sections 4 and
5 introduce two new methods to improve the robustness of
the CR method under head motion: the Cross-ratio with Dy-
namic Displacement Vector Correction (CR-DD) method
and the Planarization of CR Features (PL-CR) method.
Evaluation of the proposed methods by simulation and a
user experiment, demonstrating significant improvements,
are shown in Sect. 6. A real time implementation of both
methods is presented in Sect. 7. Finally, Sect. 8 concludes
the paper.

2 Remote Eye Gaze Tracking

As mentioned in the previous section, remote eye gaze track-
ing methods can be classified into two groups (Hansen and
Ji 2010): interpolation based and model based. The Pupil-
Corneal Reflection method (PCR) is an example of an inter-
polation based gaze tracking technique. The PCR method
detects and tracks the pupil and a corneal reflection, gener-
ated by a light source. Infrared light sources are often used as
they do not distract users, offer a more homogeneous light-
ing condition and improve the robustness to ambient light
changes in indoor environments.

Figure 1 illustrates the geometric setup considered by the
PCR method. Assuming that the cornea surface is a sphere
centered at C, the corneal reflection G and its image g do not

Fig. 1 Geometric setup of the PCR method

move when the eye rotates around C. Thus, g can be used
as a reference point. As the eye rotates to gaze at different
targets, the pupil center P moves in space, and G and P

define an image vector gp which is mapped to screen coor-
dinates through a mapping function. The mapping function
is obtained by a calibration procedure in which the user is
asked to gaze at specific screen targets. The work by Mori-
moto et al. (1999) uses a second order polynomial as a map-
ping function since a linear mapping may not be adequate
for large eye rotations (Cerrolaza et al. 2008).

Since the observed gp vector is a function of the scene
geometry (camera, eye and screen), different eye positions
will define different vectors for the same gaze point. As a
consequence, it is not expected that the mapping function,
once optimized for the calibration position, will estimate
gaze with the same accuracy for different eye positions. This
accuracy decay was evaluated by Morimoto and Mimica
(2005) and illustrates two limitations of the PCR method:
low tolerance to head movements and the need of frequent
recalibration.

2.1 Model Based Methods

Model based methods use geometric models of the eye to es-
timate the line of sight in 3D (Shih and Liu 2003; Guestrin
and Eizenman 2006, 2008; Hennessey et al. 2006; Chen et
al. 2008; Nagamatsu et al. 2008, 2010b; Model and Eizen-
man 2010). An eye model that is usually considered for
model based methods is shown in Fig. 2. Important elements
of this model for gaze tracking methods are: the eyeball,
modeled as a sphere; the foveola, the central region of the
fovea (the retinal region on the back of the eye that is respon-
sible for the detailed vision) that comprehends about 1.3◦ of
visual angle (Duchowski 2003); the pupil, a circular orifice
defined by the iris, by which light enters into the eye; the
cornea, a transparent membrane that covers the iris and can
be approximated by a spherical surface; the optical axis of
the eye, the line defined by the centers of the eyeball, cornea,
and pupil; and, finally, the visual axis of the eye, the line that

Fig. 2 Geometric eye model and relevant elements for gaze tracking
methods
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connects the foveola and the point of regard, and also passes
through the cornea center (usually pointing in the nasal di-
rection). Average values for this model are: cornea radius
of 0.78 cm; distance from the pupil center to cornea cen-
ter of 0.42 cm; horizontal and vertical angles between the
visual and optical axes of 5◦ and 1.5◦ (the combined angle
between the axes is usually referred to as the κ angle); and
a combined index of refraction of 1.3375 for the cornea and
aqueous humour (Guestrin and Eizenman 2006).

All model based methods follow a common strategy: first
the optical axis of the eye is reconstructed in 3D; the visual
axis (deviated from the optical axis by the κ angle) is recon-
structed next; finally, the PoR is estimated by intersecting
the visual axis with the scene geometry. Reconstruction of
the optical axis is done by estimation of the cornea (C) and
pupil (P ) centers. Since the line of sight is defined by the
visual axis and not the optical axis of the eye, the angular
deviation between them must be known in order to recon-
struct the visual axis from the optical axis.

Some of these model based methods use stereo cam-
eras (Shih and Liu 2003; Guestrin and Eizenman 2008;
Chen et al. 2008; Nagamatsu et al. 2008), while a single
camera is used by others (Guestrin and Eizenman 2006;
Hennessey et al. 2006). In either case, the cameras need to be
calibrated and the scene geometry must be known so that the
PoR can be computed. Thus, these systems need to be fully
calibrated, a requirement that does not exist for the PCR
technique. This way, freedom of movement is achieved by
an increase in the complexity of system setup.

Guestrin and Eizenman (2006) showed that, for gaze es-
timation methods based on detection and tracking of the
pupil and corneal reflections, the complexity of the required
eye model varies with the number of cameras and light
sources available. The minimum system configuration that
allows for free head motion uses a single camera and 2 light
sources. With such setup, an eye model with 5 known pa-
rameters must be used: cornea radius; distance from pupil
center to cornea center; combined index of refraction of
the cornea and aqueous humour; and vertical and horizon-
tal components of the κ angle. These personal parameters
are estimated by a one time per subject calibration proce-
dure. When a setup that uses at least 2 cameras and at least
2 light sources is used, the optical axis of the eye can be
reconstructed without the use of any personal parameters.
Horizontal and vertical components of the κ angle still need
to be known in order to reconstruct the visual axis in 3D, but
the number of calibration points required to estimate these
parameters is reduced to 1.

Nagamatsu et al. (2010b) presented a model based
method that completely eliminates personal calibration re-
quirements by using a binocular setup (both eyes are tracked
simultaneously). They assume that the visual axes of the left
and right eyes are symmetric about the sagital plane, and

ignore the vertical angle of the visual axis due to its typical
low values. By these assumptions, the PoR is computed as
the mid point of the points obtained by the intersections of
both optical axis with the screen. Since reconstruction of the
optical axis for each eye requires the use of 2 cameras, a
total of 4 cameras are used by this method.

A similar approach for a user-calibration-free gaze es-
timation system was proposed by Model and Eizenman
(2010). They also use a binocular solution, but do not as-
sume symmetry between the visual axes. Their method es-
timates horizontal and vertical rotation angles of the visual
axis for both eyes (4 parameters in total) during eye track-
ing usage, but without relying on subjects to stare at specific
points on screen. Assuming that at each time instant both
visual axes stare at the same point, the 4 parameters are esti-
mated by minimizing the distance between the intersections
of both visual axes with the screen.

2.2 Cross-Ratio Based Eye Tracking

A method for remote eye gaze tracking based on the cross-
ratio invariant property of projective geometry was intro-
duced by Yoo et al. (2002). The method uses 4 light sources
arranged in a rectangular shape, attached over a surface of
interest. Typically this surface is the computer screen and
each light source is placed at a screen corner. When a per-
son faces the screen with these lights attached, 4 corneal re-
flections are generated on the cornea surface. These reflec-
tions, together with the observed pupil center, are then used
to compute the PoR. Figure 3 illustrates the geometric setup
considered for this method, where the following elements
can be pointed:

– Li : light sources (screen corners).
– Gi : corneal reflections of Li .
– gi : projections of Gi in the image.
– J : point of regard.
– P : pupil center.
– C: center of curvature of the cornea.
– p: image of P .
– O: camera projection center.

In its basic form, the cross-ratio based method for remote
eye gaze tracking assumes gi as projection of Gi , Gi as pro-
jection of Li , and that each one of these groups (gi , Gi and
Li ) is coplanar, defining the planes Πg , ΠG and ΠL (note
that Πg is coincident with the image plane). Besides that, p

(in Πg) is the projection of P (in ΠG) and P is projection
of J (in ΠL).

Points in Πg result from the composition of two projec-
tive transformations over ΠL, and therefore the composition
is also a projective transformation. This way, being invariant
to this kind of transformation (Hartley and Zisserman 2000),
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Fig. 3 Geometric setup used by
the cross-ratio method for
remote eye gaze tracking

Fig. 4 Estimation of the PoR J

using the cross-ratio invariant.
First i1 and i2 are computed
using points gi . Next, (px,py)

and (mx,my) are computed and
used to estimate (Jx, Jy)

the cross-ratio can be used to compute J . The cross-ratio
(cr) is defined for 4 collinear points (Q1, Q2, Q3, Q4) by:

cr(Q1,Q2;Q3,Q4) = δ13δ24

δ14δ23
(1)

where δmn is the Euclidean distance between points Qm

and Qn.
Figure 4 shows how the cross-ratio invariant can be ap-

plied to compute J . From image points gi , it is possible to
compute m (the projection of M , the center point of the rect-
angle formed by Li ), as well as the ideal points i1 and i2.
An important property of ideal points is that the images
of any pair of parallel lines crosses at their correspondent
ideal point. This way, as L1L2 and L3L4 are parallel at
the computer screen, g1g2 and g3g4 can be used to com-
pute i1. By geometric construction, lines i1p and i1m can
be used to determine py and my as shown in Fig. 4. Simi-
larly, px and mx can be determined, being possible to define
2 sets, each one with 4 collinear points: {g1,px,mx,g2} and

{g1,py,my,g4}. For these 2 sets of points, the following ra-
tios can be computed:

r1 = cr(g1,px,mx,g2), (2)

r2 = cr(g1,py,my,g4) (3)

Due to the cross-ratio invariance to projective transforma-
tions, it is also known that:

r1 = cr(L1, Jx,Mx,L2), (4)

r2 = cr(L1, Jy,My,L4) (5)

Thus, given ratios r1 and r2, Jx and Jy (only unknown val-
ues in Eqs. (4) and (5)) can be computed, and the PoR J can
finally be estimated.

Since the cross-ratio method is based on projective trans-
formations between planes, these transformations can also
be described by means of homographies (Hartley and Zis-
serman 2000). In this case, p can be expressed as

p = H2
(
H1(J )

)
(6)
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where H1 is the homography that transforms points from
ΠL to ΠG and H2 the one that transforms points from ΠG

to Πg . Homographies H1 and H2 can be combined into a
single transformation H that directly transforms points from
ΠL to points in Πg . Matrix H can be estimated from the cor-
respondence between points gi and Li , and J can be com-
puted as

J = H−1(p) (7)

To facilitate the presentation and discussion of other gaze
tracking methods based on the cross-ratio concept, we will
define the CRf function. The CRf function receives gi , p,
and the dimensions of the rectangle formed by Li as input.
It returns the point in ΠL that corresponds to p in Πg . Since
the dimensions of the rectangle formed by Li are usually
constant considering a typical gaze tracking scenario, we
can drop the dimensions from the input arguments of the
CRf function. Thus, we will define the following notation
for this function:

PoR = CRf(gi,p) (8)

For the basic form of the cross-ratio (CR) method de-
scribed until now, gaze estimation procedure can be repre-
sented in a compact way by the CRf function.

Observe that, in theory, this solution for remote gaze es-
timation does not impose any restriction on the eye posi-
tion and no previous parameter value needs to be used. It is,
therefore, an elegant and simple solution that tolerates head
movements and is calibration-free. Unfortunately, large gaze
estimation errors are observed when the CR method is
used in its basic form. Coutinho and Morimoto (2006), and
Guestrin et al. (2008) made detailed investigations to explain
the large observed estimation error, identifying two major

sources of error which are, in fact, two simplifying assump-
tions that are not valid in practice. These assumptions are:

1. P and Gi are coplanar.
2.

−→
CP is considered as the line of sight.

The first assumption is inaccurate because the location
of P relative to ΠG is a function of the distance between
P and C, as well as the current eye rotation. Moreover, the
location of ΠG is also dependent on Li , C, O and the cornea
radius. Therefore, there is no guarantee that P and ΠG will
be coplanar for arbitrary situations. Since the CR method
is based on transformations between planes, gaze estimation
error will increase as the distance from P to ΠG increases.
It is also important to note that Gi are, in fact, not coplanar,
although an approximation to a plane (ΠG) is reasonable
(Hansen et al. 2010).

The second assumption affects gaze estimation results
due to the fact that the visual axis of the eye (the actual line
of sight) is deviated by κ from the optical axis. When J

is computed, what is actually being computed is the point
where the optical axis intercepts the screen plane. The point
intercepted by the visual axis is displaced from J , and the
observed displacement is a function of both eye distance and
rotation relative to the screen plane.

When a more realistic geometric setup, as shown in
Fig. 5, is considered, the CR method cannot be directly ap-
plied to estimate the PoR as shown in Eq. (8). Consider the
following elements of this new setup:

– Li : light sources (screen corners).
– Gi : corneal reflections of Li .
– gi : projection of Gi in the image.
– C: center of curvature of the cornea.
– P : pupil center (coincident with the iris center).

Fig. 5 Realistic geometric
setup that should be considered
for cross-ratio based eye gaze
tracking
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– J : intersection between the optical axis and ΠL.
– P ′: intersection between the optical axis with ΠG.
– V : intersection of the visual axis with the iris.
– K : intersection of the visual axis with ΠL (PoR).
– V ′: intersection of the visual axis with ΠG.
– p, p′, v, v′: images of P , P ′, V e V ′.
– O: camera projection center.

Observing Fig. 5 it is possible to notice what happens if p

and gi are directly used to compute the PoR by application
of the cross-ratio. First, p is the projection of P , a point
that does not belong to ΠG. Consequently it is incorrect to
assume that p and gi are images of coplanar points. Besides
that, the optical axis of the eye intercepts the screen at J , a
point that does not correspond to the actual PoR (K).

To deal with these strong simplifying assumptions as-
sumed by the CR method, new methods were developed
based on the cross-ratio concept. These methods try, to a
greater or lesser degree, to employ models that approximate
to the complete scenario shown in Fig. 5. Some of these ex-
tensions will be introduced in the following sections, show-
ing how gaze estimation error compensation is achieved, as
well as pointing some issues still left open that motivated the
work presented in this paper.

2.2.1 Cross-Ratio with Multiple α Correction

Yoo and Chung (2005) improved the CR method by cor-
recting the error introduced in the gaze estimation due to the
non-coplanarity of P and Gi . In their solution, the PoR is
computed in the following way:

PoR = CRf
(
Ts(gi, αi),p

)
(9)

where Ts is a transformation defined by:

Ts(x,α) = α (x − g0) + g0 (10)

In other words, Ts scales any image point x by α, relative
to point g0. This point is the image of the corneal reflection
G0, which is generated by a fifth light source that is attached
near the camera’s optical axis (note that when we refer to
points gi or Gi we are just considering the corneal reflec-
tions generated by the light sources attached to the screen
corners). An important property of G0 is that it belongs to
the line OC and, as such, g0 is the projection of C in the
image plane.

The transformation of gi in the image plane by Ts is
equivalent to performing a scale of Gi in space (relative
to C), so that Gi and P become coplanar, and then project-
ing these transformed points into the image plane.

Each point gi has its own scale factor αi . Because of this
we will denote this method as the Cross-ratio with Multi-
ple α Correction (CR-Mα) method. These αi values are ob-

tained by a calibration procedure where a person has to look
at each Li point. Each αi is computed as:

αi = ‖pi − g0‖
‖gi − g0‖ (11)

where pi corresponds to the image of the pupil center when
the person gazes at Li .

The idea behind this procedure lies in the fact that it is
expected that pi perfectly matches Ts(gi, αi) when the eye
gazes at Li . A problem with this approach is that, due to
the κ angle between the optical and visual axes of the eye
(not taken into account by the method), there is no guaran-
tee that pi will be in the line gig0. This way, the calibrated
αi parameters may not be accurate enough to compensate
the non-coplanarity of P and Gi . Sum to that the lack of an
explicit compensation of the κ angle, which leads to esti-
mated gaze points being displaced from the actual observed
points.

2.2.2 Cross-Ratio with Displacement Vector Correction

The Cross-ratio with Displacement Vector Correction (CR-
D) method, developed by Coutinho and Morimoto (2006),
is an extension of the CR-Mα method in which the error
introduced in the gaze estimation due to the κ angle is also
compensated. For this method the PoR is computed by the
following equation:

PoR = CRf
(
Ts(gi, α),p

) + d (12)

or equivalently by:

PoR = CRf
(
gi, Ts(p,α)

) + d (13)

Although in Coutinho and Morimoto (2006) the PoR is esti-
mated using Eq. (12), we prefer to use the equivalent version
of Eq. (13) because it is more suited to the geometric setup
described in Fig. 5, in the sense that we want to bring P to
ΠG in order to solve the non-coplanarity issue. In this ver-
sion, instead of scaling all gi points, just p is scaled. Since a
single α value is used, it does not matter which set of points
is scaled. Just keep in mind that the α used in Eq. (12) will
be the inverse of the α used in Eq. (13).

When the suitable α value is used, the transformation of
p by Ts results in an estimation of p′, which is the projection
of P ′, which in turn is the point where the optical axis inter-
cepts ΠG. Since P ′ and ΠG are coplanar, the first source of
error of the basic CR method is compensated.

The use of Ts is not enough, though, to accurately esti-
mate the PoR. As can be seen in Fig. 5, the result of apply-
ing the CRf function to image points gi and p′ is J , which
is displaced from the actual PoR (K). To correctly compute
K a displacement vector d must be added to J . The addition
of d compensates the error in the gaze estimation introduced
by the κ angle.
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Parameters α and d are obtained by a calibration proce-
dure where a person gazes at a set of on screen target points.
Let X be the set of n calibration points and Yαc the set of
estimated PoRs for a given αc (α candidate) without the
addition of any displacement vector. Let Δαc = {xi − yαc

i |
xi ∈ X,yαc

i ∈ Yαc} be the set of displacement vectors given
by the difference between calibration and estimated points.
Based on the observation that for the optimum α value vec-
tors in Δα should be approximately constant, the optimum
α will be the αc value that minimizes the following summa-
tion:
n∑

i=1

∥∥(
xi − yαc

i

) − mean
(
Δαc

)∥∥ (14)

After the α parameter is computed, d is taken as the mean
vector of the Δα set.

2.2.3 Homography Based Methods

Another approach to compensate the sources of error of the
basic CR method is to use a Homography (HOM) trans-
formation to map estimated gaze points (affected by both
sources of errors) into the expected gaze points. This idea is
presented by Kang et al. (2007) and Hansen et al. (2010).
In both cases, the homographies used to correct the esti-
mated gaze points are obtained by a calibration procedure
during which a person has to gaze at some target points on
the screen.

In Kang et al. (2007), the point of regard is computed by:

PoR = HLL
(
CRf(gi,p)

)
(15)

where HLL is a homography that transforms estimated (in-
correct) points in ΠL to expected (corrected) points in ΠL.
Notice that no prior processing of the points passed as input
to the CRf function is performed.

An advantage of the homography mapping is that there
is no need for the extra light source responsible for gener-
ating the corneal reflection G0. The homography mapping
can also be considered as a generalization of the transfor-
mations performed by the CR-Mα (scale) and CR-D (scale
and translation) methods, being able to also correct perspec-
tive distortions.

In the homography method presented in Hansen et al.
(2010) the PoR is computed by:

PoR = HNL
(
CRn(gi,p)

)
(16)

The function CRn is a variation of the CRf function in
which the returned point is computed relative to a unitary
square (normalized space), instead of being relative to the
rectangle formed by Li points. The homography HNL then
transforms estimated gaze points in the normalized space to
expected gaze points in the screen space (ΠL).

The use of a normalized space adds another advantage
to the homography method: the dimension of the rectangle

formed by Li does not need to be known. When the nor-
malized space is not used and dimensions of Li needs to
be known, conversions between metric unit (physical size of
the rectangle) and pixel unit must take place, during which
eventual offsets between the Li rectangle and the useful
screen area must also be taken into account. This way, the
use of the normalized space facilitates implementation, by
dissociation of the ΠL plane from the plane over which we
want to track a person’s gaze.

3 Head Movement Tolerance of CR Based Methods

The extensions to the CR method previously presented (Yoo
and Chung 2005; Coutinho and Morimoto 2006; Kang et al.
2007; Hansen et al. 2010) were successful, to a greater or
lesser degree, in compensating the error introduced in gaze
estimations due to the strong simplifying assumptions as-
sumed by the CR method in its basic form. In particular, the
compensation performed by the CR-Mα method is incom-
plete since it compensates the non-coplanarity of P and Gi ,
but neglects the compensation of the κ angle. The CR-D and
HOM methods, on the other hand, fully compensates both
sources of error.

Error correction strategies employed by these extensions
include: the transformation of the input arguments to the
CRf function (the case of the CR-Mα method); the transfor-
mation of the value returned by the CRf function (the case
of the HOM methods); and the transformation of both input
arguments and value returned by the CRf function (the case
of the CR-D method). Despite the different strategies and
different implementations, all of these transformations rely
on calibrated parameters that minimize the gaze estimation
error for a set of screen targets used as calibration points.

Among the two sources of error of the basic CR method
(non coplanarity of P and Gi , and the κ angle between the
visual and optical axes of the eye), the κ angle is the one that
most contributes to the lack of robustness to head movement
that is observed in the extensions of the CR method. This is
illustrated on Fig. 6 that shows the values of the α and d
parameters used by the CR-D method that were obtained
after calibrating the method at different head positions (the
data shown in the figure were obtained by simulation whose
setup is detailed in Sect. 6.1). From Fig. 6 it is clear that the
value for α is quite stable for all head positions, while the
component values of d show a great variation across differ-
ent positions.

Although the CR-D method was used to illustrate how
the optimal value of d changes according to the head posi-
tion, a similar effect occurs with the HOM methods. For this
methods some of the coefficients of the homography trans-
formation used to correct the gaze estimation will also show
a similar behavior to what was observed for d. Based on this
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Fig. 6 Calibrated parameters (α and d) for the CR-D method at dif-
ferent head positions (P0 through P8). Shown in the graph are the per-
centage variation of the calibrated parameters relative to P0. Note that
the CR-D method was calibrated at positions P0 through P8 for the
purpose of illustrating the variation of the calibrated parameters. In
practice, we want to perform calibration at just one position

observation we can note that the calibrated parameters used
by the CR extensions to explicitly correct the κ angle are not
suitable to correct the gaze estimation at arbitrary head posi-
tions. In fact, the calibrated parameters are optimized for the
specific head position where calibration is performed, which
somewhat imposes limits on the freedom of head movement.

This work was motivated by the observation that head
movement tolerance could still be improved for gaze esti-
mation based on the cross-ratio principle. As a result, we
present two new methods: the Cross-ratio with Dynamic
Displacement Vector Correction (CR-DD) method and the
Planarization of CR Features (PL-CR) method. The main
idea of the CR-DD method is to estimate changes in head
position in order to adjust calibrated parameters accordingly.
The PL-CR method follows a different approach, employ-
ing a set of calibrated parameters that are invariant to head
movement. Each of these methods are presented in greater
detail in Sects. 4 and 5. Before introducing them, for better
understanding of how κ affects gaze estimation, under the
condition of head movement, a more detailed investigation
is presented in the following section.

3.1 The Influence of κ on Gaze Estimation

To illustrate how κ affects gaze estimation, consider two
simple scenarios shown in Fig. 7. Ct correspond to the po-
sition of the cornea center, Jt the intersection of the optical
axis with the screen, and Kt the intersection of the visual
axis with the screen. Assume that the values C0, J0, and K0

are computed at a fixed calibration position. The first sce-
nario, on the left of Fig. 7, shows a depth translation of the
eye, and the second scenario, on the right of Fig. 7, shows a
rotation. For simplicity, consider that the optical axis is per-
pendicular to the screen at the calibration position in both
scenarios.

Fig. 7 Variation of the on-screen offset dt due to eye translations and
rotations

At the calibration position, κ can be computed as:

κ = atan

(
d0

z0

)
(17)

where d0 is the displacement between J0 and K0 (respective
intersections of the optical and visual axes with the screen
when the cornea is at C0), and z0 is the distance of C0 to the
screen.

As the eye gets farther from the screen, to keep the gaze
on the same screen position, the eye has to rotate by an an-
gle θ . Assuming that κ is a constant eye parameter, the off-
set between the intersections of the optical and visual axis is
now dt . Since most gaze methods are only able to compute
Jt , if a constant offset, such as d0, is used to compensate for
κ (as suggested in Coutinho and Morimoto 2006), then the
new gaze position would be computed as:

K ′
t = Jt + d0 (18)

which is different than the true Kt position shown in Fig. 7.
Therefore the error contribution due to this constant offset
would be:

ε = ∥∥Kt − K ′
t

∥∥ = ‖dt − d0‖
= ‖Jt − J0‖ = zt tan(θ) (19)

As zt goes to infinity, the visual axis becomes perpendic-
ular to the screen, and θ becomes equivalent to κ . This re-
sults shows that the methods that use a constant offset have
an upper bound on the estimated gaze error due to transla-
tion equal to κ .

The second scenario shows a rotation around C0. Assum-
ing once again that κ is a constant eye parameter, a rotation
of the optical axis by θ would move J0 to Jt . From the ge-
ometry shown in Fig. 7, Kt and K ′

t can be computed as:

Kt = z0 tan(θ + κ) + J0

K ′
t = Jt + d0 = z0 tan(θ) + J0 + d0

(20)

and therefore, assuming J0 as a reference point, we can com-
pute the estimation error due to a rotation by θ as:
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Fig. 8 Variation of the on-screen error of a constant offset method due
to eye rotation, assuming the eye is 60 cm far from the screen

εθ = Kt − K ′
t

= z0
(
tan(θ + κ) − tan(θ) − tan(κ)

)

= z0
tan(θ) tan(κ)(tan(θ) + tan(κ))

1 − tan(θ) tan(κ)
(21)

Observe that for large values of θ , the offset contribution due
to κ becomes larger and it is not bounded since the visual
axis can be parallel to the screen. Figure 8 illustrates how
the rotation error behaves for z0 = 60 cm, assuming κ = 5◦
and κ = 2◦. Assuming a 19′′ monitor and the eye position
directly in front of the center of the screen, the eye would
need to rotate about 18◦ to cover the whole screen. If the
eye is positioned towards the edge of the screen, it would
have to rotate about 36◦ to look at the other end. Observe
from Fig. 8 that the error for κ = 5◦ for a 20◦ rotation is
about 1 cm (approximately 1◦ of the visual angle) and about
3 cm for a 35◦ rotation. For κ = 2◦, the influence on the
error magnitude is much smaller.

These results show that translations of the eye parallel to
the screen, that would require a rotation of the eye relative
to the calibration position, may cause large estimation er-
rors towards the edges of the screen, when a constant offset
method is applied.

Also observe that for eyes with small κ the influence
of the correction mechanisms on the gaze estimate will be
smaller.

4 CR-DD: Cross-Ratio with Dynamic Displacement
Vector Correction

The CR-D method (Coutinho and Morimoto 2006), previ-
ously introduced, treats both sources of error of the CR
method pointed by Guestrin et al. (2008). However, as ver-
ified in Coutinho and Morimoto (2006), some accuracy de-
cay in gaze estimation is observed under head movements,

Fig. 9 Image formation of a corneal reflection generated by a light
source

mainly depth movements, i.e., movements of the head in the
direction perpendicular to the screen.

The goal of the CR-DD method is to extend the CR-D
method to improve gaze tracking accuracy under the partic-
ular case of depth movements, the type of head movement
that most affects the CR-D method. The previous analysis
of the influence of κ on gaze estimation results showed why
depth movements increase gaze estimation error.

If it is possible to measure the eye distance to the screen,
it is possible to adjust d so that its length is adequate to the
eye distance in a given moment, thus minimizing error. This
solution is not ideal, since the length and orientation of d are
functions of both eye distance and rotation, but it is possible
to compensate the portion of the error introduced due to eye
translations in the direction perpendicular to the screen.

Consider d0 the reference displacement vector obtained
by the calibration procedure of the CR-D method, which
was executed at a reference distance z0. As ‖dt‖ is directly
proportional to current distance zt (as shown in Eq. (17)),
a more suitable displacement vector dt for an arbitrary dis-
tance zt can be computed by:

dt =
[

zt

z0

]
d0 (22)

4.1 Estimating Distance Variation

In order to compute the displacement vector as indicated by
Eq. (22), both the reference distance z0 and the current dis-
tance zt need to be known. Alternatively, by observation of
the size of the quadrilateral formed by gi (corneal reflec-
tions in the image), it is possible to estimate the ratio zt/z0

without needing to know the absolute values of zt and z0.
Figure 9 illustrates the image formation of a corneal re-

flection for a single light source. Let L1 be the light source,
O the camera center of projection, C the center of curvature
of the cornea and z the distance from O to C. Consider also
that the camera has focal length fcam, that the cornea sur-
face is a convex spherical mirror of focus fcor , G1 is formed
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at the focus plane and projected onto the image plane at g1.
Heights h and h′ (from G1 and g1, respectively, relative to
the camera axis) are given by:

h = fcorH

z
, (23)

h′ = fcamh

z − fcor
(24)

Substituting (23) in (24), we have that:

h′ = fcamfcorH

(z − fcor)z
→ h′ ∼ fcamfcorH

z2
(25)

Using the approximation for h′ (justified by the fact that
distance fcor is much smaller than z), and considering two
different distances zt and z0 with respective heights h′

t and
h′

0, it is possible to compute the ratio zt/z0 in the following
way:

zt

z0
=

√
h′

0

h′
t

(26)

Therefore, by measuring the variation in the size of the
quadrilateral formed by gi , it is possible to estimate the rel-
ative translation of the eye from an initial reference position
(z0), and the displacement vector d0 can be adjusted accord-
ingly.

The CR-DD method uses the same calibration procedure
of the CR-D method with a few additions. At calibration dis-
tance z0, besides computation of the α scale factor and the
displacement vector d0, we also compute the reference size
size0 of the quadrilateral formed by gi . The size of quadrilat-
eral was taken as the sum of its diagonal lengths. Since dur-
ing calibration a person looks to different points across the
screen, size0 is computed as the average value of all quadri-
lateral sizes measured for all calibration points.

After calibration of α, d0 and size0, gaze estimation at
distance zt is performed in the following way:

PoR = CRf
(
gi, Ts(p,α)

) + zt

zo

d0 (27)

which is equivalent to:

PoR = CRf
(
gi, Ts(p,α)

) +
√

size0

sizet

d0 (28)

5 PL-CR: Planarization of CR Features

Recall Fig. 5 that illustrates a more realistic geometric setup
for the cross-ratio based methods for remote eye gaze track-
ing. For this scenario, the basic cross-ratio principle pre-
sented in Sect. 2.2 cannot be directly applied to estimate
the PoR(K). Observing Fig. 5 we can see that p is projec-
tion of P , a point that does not belong to ΠG and as such

it is incorrect to assume that p and gi are images of copla-
nar points. Also, the intersection of the optical axis with the
screen plane (J ) does not corresponds to the point that the
eye is actually gazing (K).

It is straightforward to see that if point v′ can be com-
puted, and v′ and gi are used to compute K using the basic
cross-ratio principle then all sources of error regarding the
geometric setup will be eliminated. Remember that v′ is the
image of V ′ the point where the visual axis intercepts the
plane ΠG. Therefore the use of V ′ satisfies the two simpli-
fying assumptions assumed by the basic cross-ratio method:
V ′ and Gi are coplanar and V ′ is a point in the line of sight.
For the PL-CR method the PoR is computed in the follow-
ing way:

PoR = CRf
(
gi, v

′) (29)

The challenge of the PL-CR method is to find a way to
estimate v′ given image points p and gi . Since v′ is the pro-
jection of V ′, which in turn is defined by the intersection of−→
CV with ΠG, our problem resumes to the estimation of

−→
CV

and ΠG. Because points Gi are not exactly coplanar, when
we compute ΠG, what is actually computed is an approxi-
mate plane such that the distances from Gi to the plane are
minimized.

To keep the hardware requirements of the PL-CR method
simple (same configuration of other CR based methods), we
will assume a weak perspective camera model for estima-
tion of

−→
CV and ΠG. In the weak perspective camera model,

image formation can be described by an orthographic pro-
jection, followed by a scale (Emanuele Trucco 1998). The
use of such camera model is justified by the fact that the
size of the eye (our object of interest) is much smaller than
the typical distance from the eye to the camera. For the so-
lutions to these sub problems, the scale component of the
weak perspective model is not relevant since estimation of−→
CV and ΠG do not take place in real world metrics. This
way, a simpler orthographic camera model can be assumed.

Before following to the presentation of the solutions to
each sub problem, we will first introduce the eye model
and relevant coordinate systems considered by the PL-CR
method.

5.1 Eye Model

In order to reconstruct the visual axis in 3D space and
compute its intersection with ΠG, we will consider the
eye model that is shown in Fig. 10. For this model, con-
sider the following orthonormal coordinate system: origin at
pupil/iris center P , plane xy coincident with the iris plane,
with y axis pointing in the upward direction, x in the hori-
zontal direction and z perpendicular to the iris (correspond-
ing to the optical axis of the eye).

Relevant points for this model are the cornea center C

and the point V where the visual axis intercepts the pupil/iris
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Fig. 10 Normalized eye model

plane. C belongs to the z axis and its coordinates are given
by (0,0,−cz). V belongs to the xy plane and has coordi-
nates (vx, vy,0). This model has, therefore, 3 parameters
(vx , vy and cz) that will be estimated by a calibration pro-
cedure. Similar to other gaze tracking methods, the calibra-
tion procedure consists of finding values for vx , vy and cz

that minimize the gaze estimation error for a set of calibra-
tion points. Since the model parameters are independent on
eye location, the calibration procedure needs to be done just
once per person and also ensures robustness to head move-
ments.

This model is a normalized model where the cornea ra-
dius has a value of 1.0. This way, the iris radius is given by√

1 − c2
z . The use of a normalized eye eliminates the need to

know the absolute values of the eye structures. What is im-
portant, in this case, are the ratios between model elements.

5.2 Coordinate Systems

Besides the normalized eye model, it is also important to
define 3 orthonormal coordinate systems, shown in Fig. 11:
the image coordinate system I (represented by the FI ma-
trix), the translated image coordinate system I′ (represented
by the F′

I matrix) and the eye coordinate system E (repre-
sented by the FE matrix).

Coordinate system I has its xy plane coincident with the
image plane, z axis perpendicular to xy, origin in p, and
units given in pixels. Coordinate system I′ has x, y and z

axes equal to those from I, with origin in P .
Since an orthographic camera model is being used, the

projection of a given point in the image plane is equivalent to
the projection of the corresponding point in the plane xy of
I′. The distance between the origins of I and I′ are unknown
and can have any arbitrary value, being not relevant to the
PL-CR method. We will assume I′ to be our reference co-
ordinate system. Estimation of the visual axis and the plane
ΠG will take place relative to this reference system. This
way, any point that does not have an explicit indication of a
coordinate system are assumed to be relative to I′.

Coordinate system E is also centered at P with its or-
thonormal axes defined by:

ez = n
‖n‖ , (30)

Fig. 11 Relevant coordinate systems for the PL-CR method

ex = up × ez

‖up × ez‖ , (31)

ey = ez × ex (32)

where n is the normal to the iris (it represents the optical axis
of the eye) and the up vector is a reference to the world verti-
cal direction. Without this reference, there would be infinite
possibilities for the ex and ey vectors of coordinate system
E, and consequently infinite possibilities for the VE point
when transformed to the reference coordinate system I′. Es-
timation of the up vector and n will be detailed in the fol-
lowing sections.

5.3 Visual Axis Estimation

Contrary to what happens for the optical axis, for which
there is the pupil center, there is no visible eye structure as-
sociated with the visual axis. One could argue that the pupil
center is not a visible structure as well, but from the pupil
border it is possible to have a good estimate of its center.

It is due to this lack of something “visible” that the eye
model presented is important. Having knowledge of the nor-
malized model, we can compute C and V from the observed
iris pose from an eye image. Estimation of the visual axis
consists of finding the coordinates of C and V in the refer-
ence coordinate system I′. C and V can be computed by the
following formulas:

C = sFECE, (33)

V = sFEVE (34)

where CE = (0,0,−cz), VE = (vx, vy,0) and s is a scale
factor given by:

s = rt√
1 − c2

z

(35)

that has the role of scaling the normalized eye model so that
its dimensions match the dimensions of the eye in the image
at a given time instant t , with rt being the iris radius (in
pixels) at t . Despite the fact that the iris can have an elliptical
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shape in the image, its radius is given by the length of its
major semi-axis.

The up vector used to define the E coordinate system is
a reference to the real world vertical direction. The (0,1,0)

vector in the I′ coordinate system may not correspond to
the real world vertical direction if the camera is pointed up-
wards, downwards or is rotated around its optical axis. As-
suming that the screen plane is parallel to the world vertical
direction, the up vector can be inferred from the positions
of light sources Li by:

up = (L1 − L4) + (L2 − L3)

‖(L1 − L4) + (L2 − L3)‖ (36)

with Li values expressed in the I′ coordinate system. As
will be shown in Sect. 5.5, Li are computed before ΠG es-
timation and can be used to compute the up vector. How-
ever, as will also be shown in Sect. 5.5, in order to estimate
Li , C must be known, and computation of C depends on
the up vector to define the FE matrix. How to compute C,
then? Since C lies in the ez direction, any arbitrary up vector
can be used to compute it. For estimation of C we assume
up = (0,1,0) and after Li are estimated up is recalculated
using Eq. (36). After the correct value of up is computed, V

can finally be estimated.

5.4 Iris Normal Estimation

Estimation of the iris normal n is a prerequisite to define
the transformation matrix FE, which in turn is used to esti-
mate the visual axis. A solution that estimates the iris normal
based on the observed iris contour is presented in the work
by Wang and Sung (2002). Because iris edge detection is
more difficult than pupil detection, mostly due to occlusion
by the upper and lower eyelids, we used a different approach
for iris normal estimation. Instead of relying on the iris edge,
this approach is based of the pupil center P , the cz param-
eter of the eye model, and the corneal reflection G0 (which
is generated by the light source placed at the optical axis of
the camera).

Consider the points G0 and C and their projections on
the image g0 and c. Assuming the cornea as a spherical sur-
face, it is known that O , G0 and C are collinear and conse-
quently c coincides with g0. Since the iris normal is given
directly by n = P − C, the projection of n in the image will
be m = p − g0. Remembering that an orthographic camera
model is assumed, the nx and ny components of n can be
extracted from the image as nx = mx and ny = my . There-
fore, nz is the only missing component of n, whose module
is expressed by:

|n| =
√

n2
x + n2

y + n2
z (37)

Using the scale factor s previously introduced, it is also
known that:

|n| = scz (38)

Fig. 12 Corneal reflection formation, assuming orthographic projec-
tion. Also depicted in the figure are the point Gi and plane ΠG

Combining (37) and (38), nz can be computed by:

nz =
√

s2c2
z − n2

x − n2
y (39)

to finally obtain the iris normal n.

5.5 Plane ΠG Estimation

To estimate ΠG, we need to find the plane in space such
that the projections of Li on this plane, with C being the
projection center, are equivalent to Gi . This implies that Gi

belongs to the line segment LiC. Also, if G′
i is the point on

the spherical cornea surface where the specular reflection
due to Li occurs and G′

i is projected to the image point gi ,
then gi , G′

i and Gi are collinear points. This way, two lines
containing Gi are defined, and Gi can be computed by their
intersection (see Fig. 12). It is worth noting that the intersec-
tion of two lines in 3D space can have a complicating factor
because they hardly intersect at an exact point. To avoid this
problem, the middle point of the smallest line segment con-
necting the two lines is computed as the intersection.

Computation of three among the four Gi points is suffi-
cient to estimate the plane ΠG (the plane over which all light
sources Li are projected, with C being the projection cen-
ter). However, since the surface that contains all Gi points
is not exactly planar, ΠG is computed as the approximate
plane such that the summation of the distances between Gi

and ΠG are minimized.
To compute each Gi point, two lines passing through it

must be defined. The line defined by gi and G′
i is simple to

be described considering the orthographic camera assump-
tion. By this hypothesis, coordinates x and y of gi , G′

i and
Gi are the same, and the vector representing the reflected
light ray is given by r = (0,0,1). The first line is then de-
fined by:

Ri : gi − air (40)

with x and y coordinates of gi being extracted directly from
the image. For the z coordinate any arbitrary positive value
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bigger than the cornea radius can be defined to ensure that
gi is in front of the eye. In the line equation, ai is a coeffi-
cient that represents the distance between a point in the line
and gi .

The second line is defined by C and Li but, for now, just
C is known. In order to define this second line, Li must
be computed as well. Li can be expressed by the following
equation:

Li = G′
i + bi li (41)

where: li is the vector that goes in the opposite direction of
the light ray reaching G′

i (see Fig. 12); G′
i can be computed

by the intersection of Ri with the cornea surface (a sphere
of radius s, centered in C); and finally, li can be obtained by
reflecting r at G′

i .
If each equation for Li is taken individually, it is not pos-

sible to compute Li because bi remains unknown at each
equation. However, from knowledge of the distances be-
tween the Li points (i.e., knowledge of the dimensions of
the rectangle formed by Li ), an overdetermined system of
six equations with four unknowns (b1, b2, b3, and b4) can
be defined and solved, for example by least squares mini-
mization. This system of equations is described in (42).

〈L1 − L2,L1 − L2〉 = w2,

〈L2 − L3,L2 − L3〉 = h2,

〈L3 − L1,L3 − L1〉 = d2,

〈L3 − L4,L3 − L4〉 = w2,

〈L4 − L1,L4 − L1〉 = h2,

〈L2 − L4,L2 − L4〉 = d2

(42)

The values of w, h and d in the system correspond to,
respectively, the width, height and diagonal of the rectangle
formed by Li . Note that in our reference coordinate system
I′ units are given in pixels and therefore the values of w,
h and d must be expressed in pixels as well. Conversion of
such values from metric space to pixel space can be accom-
plished by:

valuep = s
valuem

rm
(43)

where valuep is measured in pixels, valuem in an arbitrary
metric unit, rm is the cornea radius in the same arbitrary
metric unit, and s the scale factor that is equivalent to the
cornea radius in pixels. For the value of rm we used the av-
erage value of 0.78 cm.

Once the equation system is solved and Li are computed,
we are able to define the line LiC and compute its intersec-
tion with Ri , thus obtaining Gi . With Gi , the approximate
plane ΠG can finally be estimated.

5.6 v′ Estimation

Once ΠG, V and C are computed, estimation of v′ is
straightforward. First V ′ is computed as the intersection of
CV with ΠG. Next we project V ′ to the image plane. Since
an orthographic camera model is used v′ = (V ′

x,V
′
y,0).

6 Evaluation of the Proposed Methods

To evaluate the performance of the proposed CR-DD and
PL-CR methods, and compare them to other cross-ratio
based methods (CR-D and HOM), simulations and user ex-
periments were conducted. To facilitate analysis and discus-
sion of the results, in the remainder of this paper we will
define two groups of methods being tested. The first group
is defined by the methods that apply some kind of head
movement compensation (HMC methods), and includes the
CR-DD and PL-CR methods. The second group includes
the methods that do not explicitly perform head movement
compensation (non-HMC methods) and includes the CR-D
and HOM methods (the HOM method tested is the one de-
scribed in Hansen et al. (2010) without the Gaussian process
error modeling).

For both simulations and users experiments, evaluation
consisted of measuring the gaze estimation error (in degrees)
at different head positions. At each head position, the sub-
jects (or the simulated eye) had to gaze at a group of screen
targets and the gaze estimation error for each observed target
was computed using the following formulas:

t = T − S

‖T − S‖ , (44)

k = K − S

‖K − S‖ , (45)

ε = 180 cos−1(〈t,k〉)
π

(46)

where T is the observed target, K the estimated gaze point
and S the subject’s head position. The average gaze estima-
tion error for a particular head position was computed by:

1

N

N∑

j=1

εj (47)

where N is the number of screen targets used as test points
and εj the gaze estimation error observed when the eye was
gazing at the target point number j .

6.1 Simulation Setup

For the simulations, synthetic images generated by ray trac-
ing were used. The LeGrand eye model was adopted for
image generation and its measures were extracted from the
table compiled in Guestrin and Eizenman (2006). In this
model the cornea and the aqueous humour are combined
into a single medium (with index of refraction of 1.3375)
so that refraction occurs only at the external cornea surface.
The cornea has a radius of 0.78 cm and the pupil center is
located 0.42 cm from the cornea center. During simulations,
when the eye was directed to a given target, it was the visual
axis of the eye that effectively intercepted the target. Two
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Fig. 13 Layout of head positions used in simulations and user exper-
iments. P0 was used as the calibration position for all gaze estimation
methods being compared

configurations for the visual axis were used. The first had
horizontal and vertical angle values of 5◦ and 1.5◦ respec-
tively. In the second configuration a horizontal angle of 2◦
and a vertical angle of 0.6◦ were used.

The simulated screen consisted of a rectangle of 34 by
27 cm, with light sources Li positioned at each screen cor-
ner. The camera was positioned below the bottom border of
the screen. More precisely, it was located 2 cm below the
middle point of the bottom border. The central point of the
screen is the origin of the coordinate system considered for
the simulations, with x and y axes corresponding to the hori-
zontal and vertical directions, and z axis perpendicular to the
screen plane. A set of 49 test targets, arranged in a regular
7 × 7 grid, was used. For calibration of each gaze estima-
tion method, a subset of 9 points from the 49 test targets,
arranged in a regular 3 × 3 grid, was used.

A perspective camera model with a vertical field of view
of 5◦ was considered to generate the images used by the sim-
ulations. Because of its limited field of view, for each head
position the simulated camera had to be rotated to point in
the direction of the cornea center. This camera configura-
tion was chosen to replicate the characteristics of the actual
camera used in the user experiments.

The layout of head positions used for simulations, as
well as for the user experiments, is shown in Fig. 13.
A total of 9 head positions were used, with the follow-
ing coordinates: P0 = (0,0,57.5), P1 = (0,0,70), P2 =
(0,0,82.5), P3 = (−12.5,0,57.5), P4 = (−12.5,0,70),
P5 = (−12.5,0,82.5), P6 = (−25,0,57.5), P7 =
(−25,0,70), P8 = (−25,0,82.5). This set of positions rep-
resents lateral, depth and combination of lateral and depth
head movements. It is important to note that the camera po-
sition depicted in Fig. 13 reflects the camera positioning
used in the user experiments. For the simulations, as already

Fig. 14 Average gaze estimation error for simulation of cross-ratio
based methods, with κ = 5◦

stated, the camera lies on the y axis, below the bottom screen
border.

Since the main objective of the evaluation is to verify
how each extension to the CR method behaves under the
condition of head movement, only position P0 was used to
calibrate all gaze estimation methods being evaluated (this
applies not only to the simulations but also to the user exper-
iments). All gaze estimation results for other head positions
(P1 through P8) are computed using the set of calibrated pa-
rameters obtained at P0.

6.2 Simulation Results

Simulation results are presented in Figs. 14 and 15. Fig-
ure 14 shows the results for the first configuration of visual
axis (horizontal rotation angle of 5◦) while in Fig. 15 re-
sults for the second configuration (horizontal angle of 2◦)
are shown. Each graph presents the average gaze estimation
error for all methods being compared (CR-D, HOM, CR-
DD and PL-CR) at each head position (P0 through P8). The
graph’s vertical axis corresponds to the visual angle error in
degrees. The horizontal axis corresponds to each head posi-
tion.

As expected, HMC methods present a better perfor-
mance (smaller average gaze estimation error) than non-
HMC methods as the eye moves away from the calibration
position (P0) for both simulation conditions (κ values of
5◦ and 2◦). The major observed difference between the two
conditions is that accuracy decay for the non-HMC methods
is directly proportional to the magnitude of κ . For κ = 5◦,
the maximum error observed for all methods and positions
is about 1.85◦ of visual angle, while for κ = 2◦, a maximum
error of about 0.77◦ is observed. This observation indicates
that for subjects with smaller κ angles, the improvements of
the HMC methods will be less noticeable than for subjects
with larger κ values.

If we consider just the non-HMC methods, it is possi-
ble to note that they are more affected by translations in z
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Fig. 15 Average gaze estimation error for simulation of cross-ratio
based methods, with κ = 2◦

(depth head movements) than translations in x (lateral head
movements). This is related to how κ affects gaze estima-
tion results as discussed in Sect. 3.1, where it was shown
that the distance between the eye and the screen plays a ma-
jor role on the error due to κ . A comparison between the
CR-D and HOM methods shows a better performance of
the HOM method, specially at the calibration position. This
is explained by the fact that the homography correction is
more flexible than the scale and translation compensation
used by the CR-D method.

When we compare the results for the HMC methods a
difference in performance between them can also be ob-
served. The PL-CR method achieves better gaze estimation
accuracy (maximum error of 0.11◦ considering both values
of κ) than the CR-DD method (maximum error of 0.56◦
for κ = 5◦ and 0.30◦ for κ = 2◦). Results for the PL-CR
method are also more stable across all head positions when
compared to the CR-DD method.

This difference between the two HMC methods is ex-
plained by the different approaches taken by each. Although
the CR-DD method compensates head movement by mea-
suring the variation of the distance between the eye and the
screen, the compensation applied is incomplete, as eye rota-
tion is not taken into account. Starting at calibration position
P0, when the eye translates in the x direction, the overall
distance from the eye to the screen does not change signifi-
cantly, while it will need to rotate more to be able to gaze all
regions of the screen. On the other hand, if the eye translates
in z by the same amount (going farther from the screen), the
distance between the eye and the screen will increase by the
translation amount, at the same time that the eye will need to
rotate less to be able to gaze all screen points. This charac-
teristic makes the CR-DD method effective in compensating
translations in z, but not as effective in compensating trans-
lations in x, a behavior that is confirmed by the simulation
results. It possible to note from the results that the perfor-
mance difference between the CR-DD and PL-CR methods

is more evident for head positions closer to the screen (P0,
P3, and P6), while for positions farther to the screen (P2, P5,
and P8), the performance of both methods are more similar.

The PL-CR method for estimation of v′ compensates
both aspects of eye movement (position and rotation), which
explains the better performance and the smaller variation in
the gaze estimation error at all head positions. This perfor-
mance difference between the CR-DD and PL-CR meth-
ods shows the importance of considering eye rotations to
proper compensate head movements. Nevertheless, the CR-
DD method is a simple solution that is capable of improving
gaze estimation under a particular condition of head move-
ments. The PL-CR method, on the other side, requires ex-
tra computation to estimate v′, which might be a potential
source of error.

6.3 Experimental Design

To be able to compare all methods using the same user data,
the data was first collected and then processed offline. The
collected data consists of images of the eye that were cap-
tured while the subjects gazed at the test points. In gen-
eral, experimental conditions were very similar to those de-
scribed for the simulations, including the use of the layout of
head positions shown in Fig. 13. There are some important
differences, however, that should be pointed out.

The first is related to the screen (by screen we mean the
visible area of the monitor). Both the simulated and real
screen used in the experiment have the same dimensions
(34 by 27 cm), but light source positioning varied between
the two conditions. In the simulations, light sources exactly
matched the screen corners. For the experiment it was not
possible to exactly fixate the light sources (infrared LEDs)
on the screen corners due to the monitor’s border. Neverthe-
less, care was taken to ensure that the infrared LEDs were
aligned with the screen plane. Also note that the monitor’s
borders were added to the screen dimensions to determine
the correct size of the rectangle defined by Li .

The camera position relative to the screen also varied be-
tween the simulation and experimental conditions. In the
simulations the camera was placed exactly below the bottom
border of the screen. For the user experiment the camera was
placed 10 cm towards the user as can be seen in Fig. 13. The
camera used for the experiments had a manual focus and a
narrow field of view (about 5◦). Therefore, for each different
head position the camera had to be directed to the subject’s
eye and its focus adjusted.

A camera with a narrow field of view was chosen for
the user experiment (as well as for the simulations) because
it permits the capture of detailed close-up images of the
subject’s (and simulated) eyes for an image resolution of
640 × 480 pixels. This camera setup ensures that the size
(in pixels) of the quadrilateral formed by gi is maximized
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which is important to ensure good precision in gaze estima-
tion. It is important to note that the use of a narrow field of
view camera is not a pre-requisite of any of the CR based
methods (including the CR-DD and the PL-CR methods).
The geometrical concept behind all CR based methods are
independent of the camera setup and, for the PL-CR method
in particular, this is also true as long as the conditions for the
orthographic camera assumption are met.

One obvious drawback of the camera setup used in this
work is that, when the head moves, it is very likely that
the eye will fall out of the camera’s field of view, requir-
ing the manual reposition of the camera (in order to point
to the user’s eye) and focus adjustment (since a manual fo-
cus camera was used). Although this was the case during
the conduction of the user experiments, this limitation can
be easily solved by the use of a pan-tilt unit in conjunction
with an auto focus camera. Another alternative to overcome
this limitation is the use of high resolution cameras. Using
higher resolutions it is possible to keep the eye within the
field of view during head movement and, at the same time,
ensure that the eye region in the captured image has a rea-
sonable size.

An experiment control software was developed for data
acquisition. The software was responsible for displaying a
circular target at each of the 49 test points on screen and
storing the image of the subject’s eye. Starting from the top
left point among the 49 test points, the target was displayed
in a left to right and top to bottom sequence. At each test
position the target stayed for about 1.3 seconds (equivalent
to 40 video frames). During this time 20 images of the sub-
ject’s eye were stored. Also, during this interval, the size of
the circular target varied from an initial radius of 20 pixels
to a final radius of 5 pixels to serve as visual stimulus. Since
multiple samples were used for each test point, the gaze es-
timation error for a given target point was computed as the
average gaze estimation error for all samples for that tar-
get. A chin rest fixed to a tripod was used to maintain the
subjects’ head still during image acquisition at each head
position.

Besides subjects’ participation, the data acquisition in-
volved the participation of an operator responsible for con-
trolling the software. The data acquisition process for each
subject followed the protocol:

1. the operator explains the objectives of the experiment,
how data acquisition is done, and gives the subject the
consent form;

2. the operator places the chin rest at position P0;
3. the subject sits down and accommodates his/her head

on the chin rest;
4. the operator directs the camera to the subject’s right eye;
5. the operator adjusts the camera focus;
6. the operator adjusts the parameters from the capture

software (thresholds used in image processing);

7. the operator starts the capture process;
8. the subject follows the target that scans through the 49

test points;
9. steps 4 to 8 are repeated for the subject’s left eye;

10. the operator places the chin rest in the next head posi-
tion and steps 3 to 9 are repeated for all head positions.

Note that data acquisition was carried out using binocu-
lar vision. Both right and left eyes had a clear vision of the
screen, regardless of which eye images were being captured
for.

6.3.1 Outlier Filtering

Incomplete feature vectors (where one of the expected
corneal reflections or the pupil are missing) and incorrect
feature detection (where points that do not correspond to the
reflections or the pupil are detected as if they were) were
problems faced during processing of captured data. A man-
ual evaluation of detected features would be impractical due
to the large amount of collected images (20 samples per
point × 49 test points × 9 head positions). For this reason
an automated approach was used to perform this evaluation,
in which all feature vectors resulting from feature detection
were classified as being either good or bad. Just the good
feature vectors were used to evaluate the performance of the
gaze estimation methods being tested.

To do such evaluation of feature vectors, we analyzed
the whole set of feature vectors (i.e., all samples for all test
points) for a given head position. The analysis was carried in
two steps: first feature vectors presenting incorrect corneal
reflections were discarded and after that feature vectors con-
taining bad pupil detection were discarded as well.

To discover which corneal reflections were incorrect the
following approach was taken: using g0 as a reference point,
and considering all 49 × 20 samples for a given head posi-
tion, a representative point for g1, g2, g3 and g4 were com-
puted. It is not expected that each gi sample matches its rep-
resentative point, but it is expected that the set of all gi sam-
ples are clustered around its representative. Feature vectors
containing at least one gi whose distance to its represen-
tative exceeds a given threshold were classified as bad and
discarded.

For pupil filtering a similar approach was taken, but con-
sidering just the 20 samples for a given test point. Since the
subjects were supposed to be staring at a single point dur-
ing collection of all 20 samples, it is also expected that the
detected pupils are clustered around a representative point.
Again a distance criteria was used to classify the pupil de-
tection as either good or bad, and feature vectors containing
bad pupils were discarded. In addition to the cases where the
pupil was not correctly detected, this pupil filtering was also
useful to filter the cases where the subject moved his/her eye
ahead of the target point due to prediction.



Int J Comput Vis (2013) 101:459–481 475

For both the corneal reflection as well as the pupil filter-
ing, the representative point R for a set of Qj = (qjx , qjy )

points was computed as:

R = (
median(qjx ),median(qjy )

)
(48)

The use of the median to determine the representative of a
set of points was motivated by the fact that incorrect de-
tected features usually displays a large displacement from
the expected location which would affect computation of a
representative based on mean values.

6.4 Experimental Results

A group of 7 subjects participated in the user experiment: 3
females and 4 males with ages ranging from 25 to 65 years.
From the 7 subjects, 4 of them (subjects 2, 3, 4 and 7) make
daily use of corrective lenses but all of them were capable to
visualize the screen targets used during data acquisition with
naked eye. The dominant eye for subjects 1 to 7 are, respec-
tively: right, left, right, right, right, left and right. Gaze esti-
mation results for each subject are shown in Figs. 16 through
22.

Similarly to the simulations, it is also expected that the
HMC methods exhibit better performance than the non-
HMC methods, as the head moves away from the calibra-
tion position P0. These expectations were met for subjects
1, 2, 4, 5, 6 and 7. For these subjects, the HMC methods
achieved smaller gaze estimation errors than the non-HMC
methods for most head positions. Besides that, under head
movement, the error for HMC methods grew at a lower rate
when compared to non-HMC methods. Some particular ob-
servations regarding the results for subjects 6 and 7 can be
made though.

Results for subject 6’s right eye are quite reasonable with
the exception of test position P6. For the left eye of subject 6,
results show that although the HMC methods perform better
then non-HMC methods, results are relatively similar and
head movement affects all methods equally. For this case,
observe that the size of the displacement vector obtained by
calibration of the CR-D method is relatively small compared
to the size for the right eye and for other subjects as can be
seen in Fig. 23. This indicates a smaller κ , as predicted in
Sect. 3.1.

For subject 7’s right eye, HMC methods do not achieve
a smaller error than non-HMC methods at some positions,
which is contrary to our expectations. For the left eye, how-
ever, the result meets the expectation, showing a clear dis-
tinction between the two groups of methods.

Subject 3 illustrates the only case for which a clear dis-
tinction in performance cannot be observed when the HMC
and non-HMC methods are compared. Also, gaze estimation
error of non-HMC methods are not affected by head move-
ments as expected. For example, for this subject’s right eye,

the gaze estimation error observed at positions P0 and P8

are very similar, despite the fact of position P8 being the
farthest from P0. As for the left eye, inspection of the dis-
placement vector length (see Fig. 23) also suggests a small
κ as the reason why the results are not the expected.

In general, experimental results are consistent with the
ocular dominance for the subjects, in the sense that results
obtained for the dominant eye are in accordance with the
expectations, the exceptions being subjects 3 and 7. The un-
clear results for subject 3 makes it difficult to analyze the
results considering ocular dominance. For subject 7, results
for the left (non-dominant) eye are superior than the results
for the right (dominant) eye. Results for subject 7’s left eye
show a clear distinction in performance between the HMC
and non-HMC methods that is not observed for the right eye.

One reason that explains these variation of results be-
tween different subjects is related to the κ angle. When a
subject’s κ is small, the effects of head movements for non-
HMC methods are smaller and consequently the new pro-
posed methods do not show a significant accuracy improve-
ment when the subject moves his/her head. The magnitude
of κ can be inferred by the size of the displacement vector
used by the CR-D method. Figure 23 shows the size of the
displacement vectors obtained by calibration of the CR-D
method, for all 7 subjects. It is possible to see that the left
eyes of subjects 3 and 6 have the smallest κ and some of
the lowest improvement ratios for the CR-DD and PL-CR
methods (when compared to the CR-D and HOM methods).

Note that even in cases where improvements for the HMC
methods are absent, the performance of the HMC methods
is, in the worst case, equal to the performance observed for
the non-HMC methods. HMC methods can, therefore, be
used for any subject, even for subjects for whom the ex-
pected gaze estimation improvement is not significant.

The combined result for all 7 subjects is shown in Fig. 24
as well as on Table 1. Figure 24 shows the average gaze es-
timation error (in degrees) for all subjects, at each head po-
sition. In addition to the average estimation error, Table 1
also presents the observed standard deviation for all sub-
jects. In this table, results for the Pupil-Corneal Reflection
(PCR) method are also included for comparison purposes.
Results for the PCR method were not included in any of
the Figs. 16 to 22 and Fig. 24 since the high estimation er-
rors for this method would make it difficult to compare the
performance among the different CR based methods being
evaluated. Note that the PCR method exhibit the best re-
sult among all methods at position P0, but is no match for
the CR based methods (even the non-HMC ones) when the
head moves away from the calibration position.

Results from Fig. 24 and Table 1 show that, on average,
HMC methods achieve lower error than non-HMC methods.
In addition to that, the average error for the HMC methods
tends to be more stable across all head positions when com-
pared to the non-HMC methods. Average error ranges from
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Fig. 16 Average gaze estimation error (measured in degrees of visual angle), for left and right eyes of 1st subject, at test positions P0 through P8.
This subject is right-eye dominant

Fig. 17 Average gaze estimation error (measured in degrees of visual angle), for left and right eyes of 2nd subject, at test positions P0 through P8.
This subject is left-eye dominant

Fig. 18 Average gaze estimation error (measured in degrees of visual angle), for left and right eyes of 3rd subject, at test positions P0 through P8.
This subject is right-eye dominant

0.49◦ to 0.62◦ for the CR-DD method, 0.38◦ to 0.59◦ for
the PL-CR method, 0.56◦ to 1.01◦ for the CR-D method
and 0.44◦ to 0.93◦ for the HOM method. Note also that the
standard deviation for the HMC methods is approximately

the same for all head positions, in contrast to the standard
deviation for the non-HMC methods that tends to grow as
the head moves away from P0. Standard deviation ranges
from 0.21◦ to 0.28◦ for the CR-DD method, 0.18◦ to 0.22◦
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Fig. 19 Average gaze estimation error (measured in degrees of visual angle), for left and right eyes of 4th subject, at test positions P0 through P8.
This subject is right-eye dominant

Fig. 20 Average gaze estimation error (measured in degrees of visual angle), for left and right eyes of 5th subject, at test positions P0 through P8.
This subject is right-eye dominant

Fig. 21 Average gaze estimation error (measured in degrees of visual angle), for left and right eyes of 6th subject, at test positions P0 through P8.
This subject is left-eye dominant

for the PL-CR method, 0.26◦ to 0.43◦ for the CR-D method
and 0.23◦ to 0.41◦ for the HOM method. As expected, the
improvements of the head movement compensation strate-
gies employed by the CR-DD and PL-CR methods are more
noticeable at head positions that are farther from P0. In these

cases, average reductions of up to 40 % in the gaze estima-
tion error are achieved.

Considering just the non-HMC methods, the experimen-
tal results show a better performance of the HOM method
over the CR-D method. This result is expected since the CR-
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Fig. 22 Average gaze estimation error (measured in degrees of visual angle), for left and right eyes of 7th subject, at test positions P0 through P8.
This subject is right-eye dominant

Fig. 23 Size of displacement vector used by methods CR-D and
CR-DD, obtained after calibration at P0

D employs just two basic transformations to correct the PoR
estimation: a scale (of the pupil center) and a translation (ad-
dition of the displacement vector). The displacement vec-
tor is obtained so that gaze estimation error over the entire
screen is minimized on average, but is not optimal for in-
dividual screen points. The HOM method, in contrast, uses
a homography normalization to compensate sources of er-
ror of the CR method. The homography transformation has
more degrees of freedom, being more flexible and resulting
in better correction for each individual screen point. This
means a smaller gaze estimation error for individual points
which results in a lower average gaze estimation error than
the CR-D method.

As for the HMC methods, the experimental results show
that the PL-CR method performs better than the CR-DD
method, mainly for positions where the head is closer to the
screen. As the head gets farther from the screen the perfor-
mance difference between these two methods gets smaller
until the observed gaze estimation errors are very similar.
This is explained by the CR-DD method’s approach to com-
pensate head movements that just considers distance vari-

Fig. 24 Average gaze estimation error for all users, at test positions
P0 through P8

ation, ignoring eye rotation. Because of this, at distances
closer to the screen (where the eye needs to rotate more),
the head movement compensation is not as affective as the
one employed by the PL-CR method.

All these observations related to the experimental results
for both the HMC and non-HMC methods are consistent
with the simulation results previously presented.

Since the HMC methods rely on extra computation to
compensate head movements, inaccuracies of detected fea-
ture points will be propagated to the head compensation
schemes used by each. An important note about the CR-DD
method in particular is that the method considers distance
variation relative to the screen, but in fact what is being com-
puted is distance variation relative to the camera. In the user
experiments the camera was positioned about 10 cm in front
of the screen. This difference may introduce some error in
the estimation of distance variation. Potential sources of er-
ror for the PL-CR includes eventual discrepancies between
the eye model used and subject’s eyes. It is known for ex-
ample that the radius of the cornea surface changes from its
central region to its borders (Nagamatsu et al. 2010a).
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Table 1 Average gaze
estimation error and standard
deviation for all subjects (in
degrees of visual angle). Each
line contains results for a head
position and each column
corresponds to a gaze estimation
method

PCR CR-D CR-DD HOM PL-CR

P0 0.35 ± 0.23 0.56 ± 0.26 0.56 ± 0.26 0.44 ± 0.23 0.38 ± 0.21

P1 6.07 ± 2.08 0.65 ± 0.28 0.49 ± 0.21 0.55 ± 0.25 0.42 ± 0.18

P2 7.93 ± 2.72 0.86 ± 0.36 0.53 ± 0.21 0.75 ± 0.34 0.51 ± 0.20

P3 2.52 ± 1.06 0.61 ± 0.29 0.59 ± 0.28 0.61 ± 0.29 0.48 ± 0.22

P4 6.65 ± 2.27 0.73 ± 0.34 0.54 ± 0.22 0.67 ± 0.32 0.49 ± 0.21

P5 8.18 ± 2.79 0.88 ± 0.35 0.54 ± 0.21 0.78 ± 0.34 0.53 ± 0.21

P6 4.80 ± 1.61 0.71 ± 0.29 0.62 ± 0.26 0.77 ± 0.34 0.51 ± 0.22

P7 7.43 ± 2.50 0.85 ± 0.34 0.58 ± 0.23 0.80 ± 0.36 0.53 ± 0.20

P8 8.31 ± 2.83 1.01 ± 0.43 0.58 ± 0.23 0.93 ± 0.41 0.59 ± 0.21

Eye torsion was also ignored for both HMC methods. Al-
though Guestrin and Eizenman (2010) argued that practical
effect of this kind of eye movement (considering distances
of 60–70 cm from the screen) in gaze estimation results are
very small, it would be interesting to further investigate and
consider this kind of movement in the model in a future
work.

7 Implementation

Our implementation was constrained by the hardware that
we had available in our lab. Our gaze tracking device con-
sists of an analog monochrome video camera, a USB video
capture card, a desktop computer, and several light sources
that are required by the cross-ratio methods.

Light sources consist of infrared LEDs and are divided
into two sets. One set correspond to the Li points and are
attached around the monitor. They generate corneal reflec-
tions Gi that are imaged as gi . The second set is attached
around the camera’s optical axis. This set generate the refer-
ence corneal reflection G0 imaged as g0. A filter is also used
in the camera to filter light in the visible spectrum.

A circuit that process the analog video signal controls ac-
tivation of these two sets of LEDs. While the even field is
scanned, the first set of LEDs (screen) is activated. Besides
generation of gi , the pupil appears dark in the even lines
of the image (as we usually see it). While the odd field is
scanned, the second set of LEDs (camera) is activated. Be-
sides generation of g0, light is reflected from the back of eye,
and the pupil appears bright at the odd lines of the image.

Since the pupil is usually the only image element that
exhibits a large contrast between the two illumination con-
ditions, this alternating illumination scheme facilitates pupil
detection during image processing.

7.1 Software

The gaze tracking software was developed for the Linux
platform and uses the OpenCV library for image process-

ing. It works in both real time and offline modes, and imple-
ments the PCR, CR-D, CR-DD, HOM, and PL-CR meth-
ods for remote eye gaze tracking. The gaze tracking software
is responsible for video acquisition (when operating in real
time mode), image processing, and detection of eye features
which are then passed to the implementations of the gaze
estimation methods. Image processing and feature detection
mainly consist of pupil and corneal reflection detection. For
the PL-CR method, in particular, iris detection is also per-
formed.

Pupil detection is based on the differential method (Ebi-
sawa 1995). The first step consists in deinterlacing of the
input image, producing a bright and a dark pupil image, fol-
lowed by subtraction of the dark image from the bright one.
The resulting image, diff , is then thresholded to segment its
high contrast regions, resulting in diffT . To avoid consider-
ing very bright regions (corneal reflections or specular re-
flections over glasses) as pupil candidates, or as part of the
pupil, the brightest areas of both dark and bright images are
segmented by two more threshold operations, resulting in
darkB and brightB. To make pupil detection more robust, a
threshold is also applied to the dark image to select its dark-
est regions, resulting in darkT . A binary image containing
regions that are pupil candidates (i.e., present high contrast
between dark and bright images, appear as dark regions in
the dark image and are not extremely bright in any of the
dark and bright images) is given as the result of following
boolean operations:

candidate = diffT ∧ darkT ∧ (!darkB) ∧ (!brightB) (49)

After the candidate image is computed, connected com-
ponent regions are extracted and analyzed to select one as
the best pupil candidate. Ideally we expect to have just one
candidate blob but, in some situations, especially for people
wearing glasses, it is possible to have more than one. The
best candidate is selected as largest blob that satisfies some
conditions: the aspect ratio of the bounding box around the
blob must be ≥ 0.5 and ≥ 2.0, and also the fill ratio (area of
the blob divided by the area of the bounding rectangle) must
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be >0.5 (just for comparison the fill rate of a circular shape
is approximately 0.785).

After the best candidate is selected, its contour is ex-
tracted into the contour image. Care must be taken here, be-
cause if a corneal reflection is formed over the pupil edge,
the pupil contour will be corrupted by part of the reflection
contour. We eliminate this interference by dilating darkB
and brightB and subtracting both of them from the contour
image. The resulting pixels in the contour are then used to
fit an ellipse, that is taken as the pupil, and p is taken as the
ellipse center.

Since corneal reflections appear as bright spots in the im-
ages of the eye, we detect them by segmenting bright regions
in both the dark and bright images. In fact this step is exe-
cuted for pupil detection, resulting in darkB and brightB.
The remaining blobs in both darkB and brightB are ordered
according to their distances from the pupil center previously
computed. In brightB we expect to find one corneal reflec-
tion, so the closest blob to the pupil center is taken as g0.
For the darkB image, the 5 closest blobs to the pupil center
are selected and combinations of 4 blobs are tested against a
rectangularity criteria. Given 4 points that form a quadrilat-
eral, and its internal angles âj , the rectangularity is the sum
of |âj − 90|, for j ∈ {1,2,3,4}. The smaller this sum is, the
closest the quadrilateral is to a rectangle. The combination
that has the smallest rectangularity score is taken as the set
of corneal reflections gi .

For the PL-CR method, in addition to the pupil and
corneal reflections, the iris must also be detected. Instead
of actually detecting the iris contour, we compute an ap-
proximation of it based on the detected pupil. It is assumed
that the iris is imaged as an ellipse with the same center and
shape of the pupil. The iris approximation is computed by
scaling the detected pupil so that the resulting ellipse’s con-
tour best matches the contour of the actual iris.

The computation of the approximate iris based on the
scale of the pupil eliminates the need to detect the full iris
contour, but at least one point from the contour must be de-
tected in order to determine by how much the pupil needs
to be scaled. To increase the chance of successful detection
of such contour point, we look for it in the horizontal line
passing through p. This search starts at p and follows in the
direction of the corneal reflection g0. This strategy ensures
that the iris contour point belonging to the horizontal search
line will not be occluded by eyelids or eye corners.

The gradient vector gr of an arbitrary point ic that be-
longs to the iris contour is expected to have a large mag-
nitude value and to also point in the approximate direction
given by i = (ic − p). If ic belongs to the same horizontal
line as p, i can be expressed by i = (1,0) or i = (−1,0) de-
pending on the search direction. This way, the point in the
horizontal search line that maximizes the following score

score =
(

gr
‖gr‖ · i

‖i‖
)

‖gr‖ (50)

is taken as a point belonging to the iris contour, which will
then be used to scale the pupil.

The use of an iris approximation is reasonable since the
iris normal computation does not rely on its contour but
rather on image points p and g0, and the cz model parame-
ter. The iris contour is just used by the PL-CR method for
computation of the s scale factor as described in Sect. 5.3.

Our gaze tracker implementation is able to process each
video frame in approximately 12 milliseconds using one
core of a Xeon 2.8 GHz processor, which ensures the real
time operation, an essential requirement when we have in-
teractive applications in mind. This processing time was
achieved for the PL-CR method, which is the one that de-
mands more computation to estimate the gaze. This time
also includes the time spent during the display of the cap-
tured video.

8 Conclusion

In this paper we presented two new methods for remote
eye gaze tracking developed with the objective of improv-
ing head movement tolerance of current cross-ratio based
eye trackers: the CR-DD and the PL-CR methods.

The CR-DD method is an extension of the CR-D method
in which the size of the displacement vector is adjusted dy-
namically according to the eye distance from the screen. In-
stead of absolutely computing the eye distance, we compute
the eye distance variation relative to an initial eye position.
This computation is done based on the observed size of the
corneal reflection pattern. A problem with this approach is
that what we are truly measuring is the distance variation
from the camera, but we are taking it as the variation be-
tween the eye and screen. It may be acceptable depending
on the placement of the camera, but this compensation is
not 100 % effective. Another problem is that we are just
measuring variation in eye distance, but not eye rotation that
also affects the displacement vector.

The PL-CR method compensates both sources of errors
pointed by Guestrin et al. (2008) by estimating the average
ΠG plane where corneal Gi reflections are formed (or the
plane over which Li are projected, having the cornea cen-
ter as projection center) and computing the intersection of
the visual axis of the eye with this plane (V ′). Once Gi and
V ′ lies on a common plane and the true visual axis of the
eye is being considered, the basic principle of the cross-ratio
method can be applied directly. To keep the use of a single
non-calibrated camera an orthographic camera model was
used to compute ΠG and V ′. We also used an eye model
whose parameters (obtained via calibration) are invariant re-
gardless of the eye location and orientation. In contrast to
the CR-DD method, the approach taken for the PL-CR bet-
ter handles all kind of head movements since eye rotation
is handled naturally by the computation of the visual axis
intersection with ΠG.
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These methods were evaluated and compared to the CR-
D and HOM cross-ratio based methods. Both simulations
and user experiments were conducted and results confirmed
the improvement in gaze estimation accuracy for the two
proposed methods under the condition of head motion. We
also showed that the amount of observed improvement is
dependent on the magnitude of the angle between the visual
and optical axes of the eye.

In addition to proposing the CR-DD and PL-CR meth-
ods, we also implemented a gaze tracker that is able to esti-
mate eye gaze in real time. The combination of the remote
gaze tracking setup, the proposed new methods that allow
larger head movement, and the real time implementation of
these methods constitutes an important foundation when the
objective is to develop gaze based interactive applications.
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