
fill

1- Please see the colo~plate on page 285. 3
JEcoSys - A Framework for Interactive Plants Simulation

Luis Carlos Yano Endo* Carlos Hitoshi Morimotot Antonio Elias FabrisT
lnstituto de Matematica e Estatistica, lnstituto de Matematica e Estatistica, lnstituto de Matematica e Estatistica,

Universidade de SSo Paulo, Universidade de SBo Paulo, Universidade de S b Paulo,
SBo Paulo - SP - Brazil Sa0 Paulo - SP - Brazit S b Paulo - SP - Brazil

Figure 1 : lnteration on a virtual ecosystem

ABSTRACT

This paper introduces JEcoSys, an extensible framework deve-
loped in Java to generate interactive simulations of plants. E o -
Sys uses a simple physical model of plants, based on dynamic
constraints, and pre-computations to achieve realism and efficiency
during animation. The framework also includes a force field based
technique to model the interaction of plants with different agents,
that can simulate natural phenomena such as wind and rain. Experi-
mental results show that JEcosys is able to simulate complex scenes
containing hundreds of tufts of grass and flowers in real-time.

CR Categories: 1.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling-Hierarchy and geometric trans-
formations, Physically based modeling; 1.3.6 [Computer Graph-
ics]: Methodology and Techniques-Interaction techniques; 1.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism-
Animation; C.3 [Specid-purpose and application-based systems]:
Real-time and embedded systems

Keywords: Computer graphics, Hierarchy and geometric transfor-
mations, Physically based modeling, Interaction techniques, Ani-
mation, Interactive systems

1 INTRODUCTION

Interactive and realistic animation of complex scenes and natllral
phenomena is still a very challenging problem due to the conflict of
requirements of interactive systems and realistic animation. Lnter-
active systems require the application to be responsive to the user's
actions, however the computational cost of realistic rendering and
animation of complex scenes in real-time is still beyond the capa-
city of current machines.

In this paper we introduce JEcoSys, a framework that allows the
rapid development of interactive, fast and realistic simulations of

'e-mail: lye@ime,usp.br
t e-mail: hitoshi@ime.usp.br
3 e-mail: aef@ime.usp.br

Proceedings of Computer Graphics International 2005 (CG1'05)
June 22-24,2005, Stony Brook. NY, USA
0-7803-9330-9~05/$20.00 02005 IEEE

plants. This framework can he used by games, biological simula-
tors, and virtual reality systems. Plants scenes are very complex to
model, render and simulate. For example, the difficulty in the ani-
mation of it forest scene is not only due to the number of elements
that must he rendered, but also due to the complexity of each plant
and their interaction with natural phenomena and other agents.

We use a simplified physical model of plants, based on dynamic
constraints, to achieve realism during animation. This plant model
is very flexible and has been used to model prairies, flowers and
little bushes, but it can be easily extended to other kinds of plants.
Efficient rendering and animation are obtained from pre-computing
several properties of the piant model. JFkoSys allows the user to
change such properties to create different looking plants based on
the same model.

The framework also includes a force field based technique that
allows any agent to interact with plants spread over a large region.
This technique allows the real-time simulation of natural pheno-
mena, such as wind and rain for example, over a large region con-
taining hundreds of plants.

The next section describes other techniques for plant modeling
and simulation, and discusses their applicability to interactive sys-
tems. Section 3 introduces the Force field technique, and shows
how it has been used to model wind interaction with plants. Section
4 describes how the framework handles the modeling, interaction,
animation and distribution of plants. Implementation issues and ex-
perimental results are presented in Section 5. Section 6 discusses
advantages and limitations of this framework and future work.

2 RELATED WORK

Several techniques were developed for modeling and animation
of plants with outstanding realism [4,7], although computationally
too expensive for interactive systems, requiring several minutes or
hours to render complex scenes.

Particles systems are commonly used to model natural pheno-
mena, including plants [lo], which are modeled by the path of se-
veral particles. Complex scenes would require thousands of parti-
cles, which makes the animation very expensive.

Level of details (LOD) techniques and pre-computations have
been used in order to improve performance. The idea is to use more
realistic models to render objects that are closer to the viewer, while
less detailed, yet more efficient models, are used for rendering dis-

66

tant objects. Points and lines representations are a very popular
approach on LOD algorithms, due to their efficiency of rendering
complex scenes comparing with Splines or even triangles. Deussen
et al. [3] use this technique to model plants with interactive rates.

Image based algorithms, such as billboards, are used to model
complex objects by approximation. A pre-generated image or a
picture of the real object is mapped onto a tridimensional structure
as a texture. This technique i s used in [S, 91 to model and animate
plants at interactive rates.

Physically based techniques 1121 are known for producing very
realistic animations, as welf as, for being very computationally ex-
pensive. One of such techniques that is particularly relevant for this
work is Dynamic Constraints [Z]. This technique creates constraint
forces that act an system's objects until some defined constraints
are satisfied, and when this wcurs they try to keep them satisfied.
Section 4.2 describe a simpler extension that considerably enhances
the performance of this model.

3 FORCE FIELD: REAL-TIME INTERACTION TECHNIQUE
FOR COMPLEX SCENES

The animation of complex scenes, such as those containing hun-
dreds of plants, by interaction are computationally very expensive,
thus very hard to implement in real-time. Most current real-time
solutions trade realism for efficiency. Since vegetation is in general
not part of the foreground, little or no resources can be allocated to
animate them. Nevertheless, background animation considerably
enhances the realism of the scene.
h [6] a Force field was modeled as a volumetric mesh that divide

the space into regions. All objects inside a region receive the action
of the force defined there. The interaction is calculated by the ac-
tion of external forces. Many agents can act over those regions,
changing the resultant force there, and the objects receive the re-
sultant force in each region. This generated poor representation on
very populated regions while inefficient one on isolated regions.

Next we present a more efficient algorithm that uses a similar
representation for the force field but with a LOD algorithm. Section
3.2 presents a wind model and shows how to adapt it to act over the
force field.

3.1 LOD Force Field

A LOD technique for the Force field was created to enhance
the efficiency and realism. In this new approach, regions that are
more populated or closer to the viewer receive interaction a large
number of force vectors, defining a more detailed interaction. Fur-
thermore, few forces are considered for distant or less populated
regions, which implies on more efficient interaction.

3. I . 1 LOD Technique

The data structure used for the Force field's information storage
is a Quadtree. With this structure we are able to create chiId nodes,
that are represented by smaller volumes, only for regions where a
greater precision is required.

The algorithm for the quadtree creation considers an initial big
region, that represents all scene. Fur each object in the scene four
new children nodes are created if the node, that this object should
be, is already occupied by a canfigurable number of objects. In this
case, h e objects that belongs to the node that was composed in four
should be distributed between the chiIdren nodes. These children
node must have 2 of the volume of the original one. This is done
on the pre-computation phase, however new objects can be easily
added later.

After the Force fieId creation it is considered that all the objects
inside the same node will receive the action of the same force vector
defined by the node.

Using this LOD algorithm we can animate regions with more
objects using more vectors. However there can be regions with
many vectors that are not even in the view frustum of the viewer.

A distance LOD algorithm was also developed to improve the
technique's performance. This algorithm calculates more precisely
the interaction on regions closest to the viewer, disconsidering non
visible nodes.

The quadtree structure aids this algorithm, since parent nodes
(regions) can represent four or more children nodes. Thus, 4h - 1
interaction operations can be spared, where h is the difference of
height between the parenr node used to represent the children.

The LOD algorithm first verifies if the node is visible, and if it
is defines wMch level of the m e will define the action over this
area. If the node is far from the viewer, parent nodes can represent
larger areas with less details. An may with the distance ranges
defines how many level are disconsidered according to the viewer's
distance. After this algorithm the Force field is represented only by
visible ceIls, where some cells may be representing several others.

Figure 2 shows the Force field with nodes painted in different
gray scale. Each gray scale defined represents a different height
of nodes in the tree, the lighter gray scale represents the leaves, the
next lighterrepresents the parent of the leaves, and so on. The figure
shows several regions represented by their parents (darker colors)
due to their distance from the viewer. The darker areas represents
the non visible nodes.

Figure 2: Force field quadtree with LOD. The box bellow shows the
original gray scale of each square. If smaller volumes are repre-
sented with a darker gray scale, this means that one of its parents is
being used to represent this node.

This approach of force interaction is very suitable for plants, that
are fixed on the ground, which implies that the node of each object
does not change. Lf the objects are allowed to move, the algorithm
should need to compute which node that this object belongs to at
each update of the force field.

Using the quadtree approach this search is very fast, and if we
define a fixed and balanced quadtree the current LOD could be de-
fined by checking the population of each visible region when the
field is updated.

The Force field must be constantly updated because of changes
of the user position and view direction. The technique is very adap-
tive, both interaction agent and object that receives the interaction
can be easily adapted to it. In the next section, a wind model is
adapted to the Farce field as an interaction agent. Section 4 des-
cribes a plant model that receives the action of the Force field.

67

3.2 Fast wind simulation using Force field

This section presents a simple wind model, integrated to the
Force field technique, that achieves fast animation of objects by the
wind simulation. In this model each wind flow is represented by a
single vector representing the velocity on each visible node of the
Force field's quadtree.

The idea behind this technique is to rely on the Force field re-
presentation, since it already defines appropriate levels of detail ac-
cording to their location relative to the viewer. Tbe flow wiII be the
set of vectors defined in the visible nodes.

Several flows can stiIl act on a node, and the Force fieId is res-
ponsibIe for the computation of the resultant force applied on that
node.

To calculate the action of the Bow over some node, the flow value
is approximated at the center of gravity of the node, considering that
the flow do not change its direction. Figure 3 describes a simple
scheme of this approach.

Model
a
b
C

Figure 3: A wind flow simulation over Force field quadtree. Nodes
with wind action have a vector describing the resultant force over it.
(a) An uniform flow; (b) A repulsing flow.

The wind flows are generated by wind sources, that act like the
model describes, applying force on the particles. The system allows
the implementation of sources of any shape, and each source can
also be under the action of other flows, moving under their action
or not. This option allows the user to create complicated flows as
the result of the combination of sources.

Primitives described in [l 11, like uniform, sink and source flow
were implemented with realistic and fast results. Furthermore, it is
possible to define different kinds of flows. Each flow can be acti-
vateddeactivated using an user interface, or can have a predefined
duration. Primitive Number of primitives

triangle 177
triangle 105
lines 118 4 INTERACTIVE PLANTS SiMULATlON

This section describes the techniques that allow the generation
of interactive simulation of plants, and discusses some of their ad-
vantages and drawbacks.

The same geometrical plant model, described on ,Section 4.1, is
used for all distances to the viewer. However, these models can be
represented using a smaller number (or even different) primitives.
Transitions between level of details can be easily handled, avoiding
abrupt shape changes.

Section 4.2 presents the animation algorithm, based on a Dy-
namic Constraints model to achieve realism and a pre-computated
one integrated to the Force field for interaction and efficiency. Other
features if this framework are shown in Section 4.3.

4.1 Plants Modeling

A vector based model was created to pre-computes the geome-
try of plants components, such as leaf, flower, stalk, etc. This model

defines a skeleton, composed by a set of vectors, for each compo-
nent. A shape is created by changing the properties of these vectors
such as scale and direction, and then generating triangles or lines
with the points defined by the model. The basic shape of the skele-
ton varies for each plant or component, and each can be fully con-
figured by the user, so that a large variety of plants can be created.

A physically based model defines the appearance of the models
by bending their components, simulating the action of gravity over
them. Some parameters, like stalk width and mass, are used to
define the model deformation. The resultant models are then pre-
computed in several different angles.

As the components of plants of the same species are very simi-
lar, a small changes in their skeletons can generate a great variety
of components shapes for that plant. Re-computing the skeletons
considerably improves the system performance during animation.
More details about this model can be found in our previous paper
I61.

The LOD technique implemented in this framework allows the
configuration of as many levels the user requires. Its basic idea is to
select a subset of the pre-computed vectors for each level of detail
created. This subset is used to create the shape of the final com-
ponent, according to the distance from the viewer. Furthermore, it
also allows the usage of triangles or lines to create the model at each
level.

The animation technique only updates the vectors that belongs
to the subset defined by the current level of detail used to render the
plant.

Figure 4 shows some results for a rose model, three level of de-
tails are illustrated. l l e difference between shapes generated using
the same vector model is very clear. The complexity of each model
is described in Table 1.

Figure 4: Three different representation of a rose model

Table 1 : Rose model complexity table for each level of detail

4.2 Plants Animation

Using the plant component pre-computed models, the animation
is performed very fast, since we only need to choose the model,
given the interaction received from the Force field. The changing
of models automatically defines the animation.

To generate a smoother animation with more realistic move-
ments we use the technique of Dynamic Constraints. Constraint
forces can animate models by moving their components to a de-
sired configuration. The movement has different accelerations and
velocities which warrants realism of the animations.

All the components are defined with an initial position. An elas-
tic farce (gel) opposes to the changing of this position. This force

68

only exists when some external force displace the component from
its initial position, and it becomes stronger as the displacement in-
creases. figure 5 illustrates the behaviour of Fe(for a component
represented by its main axis.

i.

1. 2. 3. 4

Figure 5: (1 1 The component in its initial position. (2) The component
receives the action of a external fyce @ E . gel tries to restore the
component's initial position. (3) FE incre_ases an! the component
bents more until the equ9brium between FE and Fel is established.
(4) FE decreases, thus Fel take the component closer to its original
position.

Subsection 4.2.1 explains the simplifications assumed to create
a model based on Dynamic Constraints technique that can be used
in interactive applications. The animation algorithm is described i n
Subsection 4.2.2, it uses both modeling pre-computations and Force
field to generate faster and more realistic results.

4.2.1 A Dynamic Constraint Model for Plants

. This section introduces a variation of the Dynamic Constraints
model [2] to animate plants, discussing some of the possible sim-
plifications required for an interactive execution. Equation 1 defines
a simple constraint force calculation.

constraints j bodies i

bodies i

This is a very complex equation to be solved for each plant com-
ponent in an interactive system. In the plant model we assume that
the torque does not exist, which implies that T , Hand A, all related
to the torque of the body, are null. T i s a time constant that is used
IO control the time spent for the constraint to be satisfied.

We define the action of the forces over a component at it cen-
ter of mass, similar to the Point-to-Nail constraint described in [2].
This example illustrates a body under effect of gravity and without
rota$onal terms.

D is the distance of the component center of mass from the cur-
rent position to its initial position. bI1) is defined as the rate of
change of 6, the velocity of the movement (fi(l) = 3.8(') is the
acceleration of the movement and is defined by equation 2.

bodies i

Let be the position of the center of mass when the constraint
is satisfied and 20 the current position (constraint point), the devi-
ation 5 is given by: b = /7 ~ 20

As only one constraint force, Fc, was defined and one external
force, &, is retumed by the force field as the resultant force that
acts over the component, equation 1 can be rewrikd with the as-
sumptions and notations above.

Furthemore, from 2 we have p = 0 and r = l/m. The con-
straint force needed to take the body from 2 to .& is show bellow:

(3)
- - 2 - 1 + - Fc = -FE - -mu - -m(X - X O)

T 7-2

The Dynamic Constraint model calculates the constraint force
needed to take the body to the constraint point defined. Observe
that the constraint force may be decomposed into three components:
one opposing to the extemal force, one opposing to the body's ve-
locity and another that pulls the body towards the direction of the
constraint point.

The framework uses the same model but instead of calculating
the constraint force, it defines a constraint force to get the object
position when the forces reach the state of equilibrium. This con-
straint force is defined as an elastic force given by equation 4, where
PC is a component property defined by the user.

(4)

The problem is then simplified to find out 2, given the compo-
nent center of mass at its initial position (XO), the external force
(R E) , the constraint force (FC), the previous component velocity
(3 and the time interval passed since last position update (T) .

From 3 and 4 we have:

1 - - - 2
(PC + - p) (X - X o) = -FE - -mv'

7 7

Let p = PC + $vi, then 5 describes the deviation of the com-
ponent center of mass as a function of the time elapsed, external
force and current velocity. Calculations of constants related to the
component can be performed only once to optimize animation time.

(5)

The meaning of equation 5 may be illustrated by the following
sentence: "The deviation of center of massfrom current to initial
position is due to the action of some external forces a&or as result
of a previous movement". Therefore, if some component is not
on its initial position, some external force or previous movement
caused the deviation.

We have calculated the effects of the constraint force for subin-
tervals of r , and the position the leaf will be in each time interval.
This creates a more realistic animation since the leaf will move un-
der different velocities and accelerations.

4.2.2 Fast Animation Algorithm

Equation 5 is very simple compared to 1, however, if it is applied
to many plant components the performance of the system may de-
generate. This section shows how to animate plants using the tech-
nique described in the previous section.

are calculated once for each
component, because both depend only on 7 and some properties of
the components. This cache of values avoid many redundant calcu-
lations. The deviation described in equation 5 can be calculated by

At each time interval 7, p and

69

the product of a “constant” (-;I and the external force ($E) added
to the product of another “constant” (%) and the previous move
velocity (3.

The animation is performed by two algorithms, one that updates
the plant components according to the Force field, and other that is
responsible for rendering the appropriate model.

The first algorithm obtains the external force from the Force field
for each plant visible (on a visible node of the Force field). The
deviation D is defined by the equation 5, given the external force
action; current velocity, assuming it is in the direction of axis P;
and the cached values of - $ and e.

The component’s displacement angle is calculated using the de-
viation D. The current velocity must be estimated (defined by D/r)
for the next iteration.

If the angle of displacement was changed, the second algorithm
i s called. It defines the appropriate mode1 to render the compo-
nent, according to its distance, and get the vector model (from pre-
computed set of vectors), according to the new displacement angle.

The animation results are illustrated in Figure 6

6
C

Figure 6: Animation of flowers and grass.

yellow flower 72 52 37
purpleflower 78 58 39

4.3 Other framework’s €eatures

The kamework also have a simple terrain mesh generator and a
plant distribution algorithm that considers some properties of the
terrain, like irrigation and nutrients and their influence over each
plant specie.

The algorithm creates plants concurrently for different plant dis-
tributions. One plant can occupy the area that other one could be
occupying, removing the nutrient or water needed for the develop-
ment of other distribution. The algorithm verifies if the terrain has
the proper conditions of development for each plant distribution
configured.

LOD 1

5 THE FRAMEWORK

0 a 10 meters I triangle

5.1 Implementation hues

JEcoSys was developed using Java’ because of i ts portability and
scalability. It can be easily adapted to Internet applications (Ap-
plets’ and Java Web Start Technolog?) and has several libraries
that can be used to aid some system’s functionality. Java Threads

c2
c3

http://java.sun.com
htip://java.sun.comlapplets/
ht~p://java.sun.co~p~uc~~a~webstar

75 0 0
0 loo 100

are used in other to process the Force field, simulation and anima-
tion of plants concurrently.

The system’s architecture is based on object-oriented concepts,
which makes it very reusable and adaptable to other applications
or algorithms. The system is also very extensible, since it defines
several Java interfaces and abstract classes. New techniques can be
added or replace the ones defined in order to solve another problem
or just for comparison of techniques.

Java 3DTM4 [l] API (Application Programming Interface) was
used for the system’s implementation. The system’s parameter in-
put is done by using a XML (Extensible Mark-up Language)’ based
language.

5.2 Experimental Results

This section presents some test results that show the efficiency of
the algorithms presented in this paper. The system prototype was
tested on a Pentium III 900 MHz with 512 Mb and a 64Mb graphics
video card. The results are presented in tables that allows compari-
son, analysis and discussion of the performance of the framework’s
components.

Three different kind of plant distributions were created for test-
ing. Table 2 describes the geometrical complexity of each plant.
The three level of details were used are described on Table 3.

Plant I Type I u)DI I LOD2 I LOD3
A I grasstuft I 250 1 IS0 I 175

Table 2: Geometrical complexity of ptants used for the system’s
analysis. 6 and C have similar complexity and represent only one
flower. The grass tuft (A) is composed of 25 leaves.

Table 3: Level of Detail’s description

Three different scenes were created using these plant models.
The scenes properties are described in Table 4 and shown in Figure
7. The following subsections use these test scenes to evaluate the
performance of the system.

Scene I # o f A I #ufB 1 # a f C
c1 I 50 I 15 I 15

Table 4: Test scenes description.

0

5.2.1 Performance x Geometrical complexity

Table 5 shows the system’s performance analysis given the geo-
metrical complexity of scenes. The number of primitives used is
an approximation since it changes when the user moves along the
scene, or the view direction changes. The measure is given in
frames per second (fps) and considering that both Force field and
animation algorithms are activated.

h t t p : / / j a v a . s u n . c o ~ p ~ u c ~ j a v a - ~ e ~ ~ 3 D /
5 h n p : / / w w w . w 3 . 0 ~ U

70

http://java.sun.com

c1

cz

c3

Scene
c1
C2
C3

SI 52 53
50&10fps 443zlOfps 29*11fps
52 *OS fps 42 f 0 7 fps 26 f 0 9 fps
49 i l l fps 36 h15 fps 33 f 0 6 f p s

The results show that the system’s performance depends on the
number of primitives and plant components being animated (just
the movement of the primitives have a significant cost as shown
in Table 7). For example, scene C3 has a better performance than
c2, despite flowers have a more compkx geometry, because A is
composed by 25 componenrs (leaves) and B or G only by 7 compc-
nents. The results have shown that the system can animate around
4000 leaves of grass or 400 flowers in real-time in a typical personal
computer.

Scene
Cl
c2
c3

5.2.2 Force field analysis

The Force field must handle efficientilly interaction, its benefits
should be greater than the time spent for it treatment. The system
has been tested with a random based animation, because with the
Force field disabled there would be no animation. Table 6 shows
the results. Frame rate 1 stands for Force field active, while Frame
rate 2 for Force field disabled.

N # of cFiangles N #of lines Frame rate
7300 4000 29 *11 fps
10000 4400 2 6 i ~ 0 9 f p s
3000 3750 33 &06fps

44 3 ~ 6 f p s

Table 6: Force field performance.

During the tests, the viewer was moving aIong the scene and the
plants by the action of the animation technique. The results have
shown that the Force field technique is very efficient, therefore it
can be used in other systems that require real-time generic interac-
tion.

5.2.3 Performance x Animation algorithm

Table 7 describes the system’s performance for three situations:
SI - static scenes (without animation, but user movement); S2 -
random animation; and S3 - framework’s animation technique. The
Force field is activated on all situations.

The results have shown that the physically based animation algo-
rithm have a good performance. Even on scene Cf the number of
plants created would not be much more greater than the obtained by
this system, for real-time results. The results from scene C2 (that
represents the time spent only for the plants movement) and C3 are
very similar. The time variation is very small, considering that a
realistic animation based on a physical model is used in scene C3.

6 CONCLUSlON AND FUTURE WORK

We have presented JEcoSys, an extensible, highly adaptable, and
efficient framework for the simulation ofplants. The framework al-
lows real-time user interaction with the simulation, and was devel-
oped completely in Java.

JEcoSys uses a simple physical model of plants. Interactive per-
formance is basically achieved from the pre-computation of several
parameters and the use of Level of details to control the simulation.

The study of several techniques has allowed the selection of the
most suitable ones for each specific problem. Some of these were
successfully extended or adapted to satisfy more realistically and
efficiently the proposed problem. One good results achieved was
the development of independent techniques for interaction and an-
imation that can be used to solve other similar problems. Further-
more, when they are used together, in JEcoSys, the performance
has been enhanced.

The framework also includes a Force field based technique that
may be used for fast interaction over large scenes, with objects
spread all over it, by several different agents. It was used to model
the interaction of plants with an agent that simulates the wind.

The animation technique, based on a dynamic constraint model,
generates realistic results and is still efficient, since some simplifi-
cations and pre-computations are assumed. It also can be used by
other articulated models for fast animation.

Experimental results have shown that JEcosys is able to simulate
complex scenes containing hundreds of tufts of grass, flowers and
simple bushes in real-time, using a typical personal computer. The
quality of the simulation can be seen in Figure 8.

The framework details are available at my hamepage:
<http://www.ime.usp.br/lyer. We hope this framework will help
other researchers to prototype other highly efficient algorithms for
plant simulation. For further information please check my master
dissertation [SI, unformnatelly it is only available in Portuguese.

Our main goal is to continue the development of JEcoSys to im-
prove the efficiency and realism for simulating plant ecosystems.
Some of these enhancements include the use of real plants tex-
tures, collision detection treatment, realistic biological data; and an
image based algorithm for modeling.

71

http://www.ime.usp.br/lyer

[9] E Perbet and M. P. Cani. Animating Prairies in Real-Time. In ACM
lntemcrive 3 0 Gmphics, March 2001.

[IO] W. T. Reeves and R. Blan. Approximate and Probabilistic Algorithms
for Shading and Rendering Structured Particle Systems. ACM SIG-

[l l] I. Wejchert and D. Waumann. Animation Aerodynamics. ACM SIG-

(121 A. Witkin and D. Baraff. Physically Based Modeling: Principles and

GRAPH, 19(3):313-322. 1985,

GRAPH, pages 19-22, July 1991.

Practice (SIFGRAPH97 Course Notes).

&

Figure 8: Plants animated in real-time.

REFERENCES

[l] Sun Microsystems. Java 3DTM API Tutorial.
[2] R. Bane1 and A. H. Barr. A Modeling System Based On Dynamic

(31 0. Deussen, C . Colditz, M. Stamminger, and G. Jkettakis. Interactive
visualization of complex plant ecosystems. Proceedings of rhe IEEE
Wsunlizozion Conference, October 2002.

[4] 0. Deussen, P. Hanrahan, B. Lmtermann. R. Mkh, M. Pharr, and
P. Prusinldewicz. Realistic Modeling and Rendering of Plant Ecosys-
rems. ACMSIGGMPH, 32:215-286,1998.

[SI L. C. Y, Endo. Master dissertation: Sirnulai5o de Mini-Ecossktemas
Vegetais em Tempo Real.

[6] L. C. Y. Endo, C, H. Morimoto, and A. E. Fabris. Real-time Animation
of Underbrush. WSCG, 11:41-48,2003.

[7] D. R. Fowler, P. Prusinkiewicz, and J. Battjes. A Collision-based
model of spiral phyllotaxis. ACM SIGGRAPH, 26(2):361-368,1992.

[SI A. Jakuiin. Interactive Vegetation Rendering with Slicing and Blend-
ing. In Eurographics. Eurographics. August 2OoO.

Con~traints. ACM SIGGRAPH, 22(4):179-188, August 1988.

72

Color

73

