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Figure 1 : lnteration on a virtual ecosystem 

ABSTRACT 

This paper introduces JEcoSys, an extensible framework deve- 
loped in Java to generate interactive simulations of plants. E o -  
Sys uses a simple physical model of plants, based on dynamic 
constraints, and pre-computations to achieve realism and efficiency 
during animation. The framework also includes a force field based 
technique to model the interaction of plants with different agents, 
that can simulate natural phenomena such as wind and rain. Experi- 
mental results show that JEcosys is able to simulate complex scenes 
containing hundreds of tufts of grass and flowers in real-time. 

CR Categories: 1.3.5 [Computer Graphics]: Computational 
Geometry and Object Modeling-Hierarchy and geometric trans- 
formations, Physically based modeling; 1.3.6 [Computer Graph- 
ics]: Methodology and Techniques-Interaction techniques; 1.3.7 
[Computer Graphics]: Three-Dimensional Graphics and Realism- 
Animation; C.3 [Specid-purpose and application-based systems]: 
Real-time and embedded systems 

Keywords: Computer graphics, Hierarchy and geometric transfor- 
mations, Physically based modeling, Interaction techniques, Ani- 
mation, Interactive systems 

1 INTRODUCTION 

Interactive and realistic animation of complex scenes and natllral 
phenomena is still a very challenging problem due to the conflict of 
requirements of interactive systems and realistic animation. Lnter- 
active systems require the application to be responsive to the user's 
actions, however the computational cost of realistic rendering and 
animation of complex scenes in real-time is still beyond the capa- 
city of current machines. 

In this paper we introduce JEcoSys, a framework that allows the 
rapid development of interactive, fast and realistic simulations of 
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plants. This framework can he used by games, biological simula- 
tors, and virtual reality systems. Plants scenes are very complex to 
model, render and simulate. For example, the difficulty in the ani- 
mation of it forest scene is not only due to the number of elements 
that must he rendered, but also due to the complexity of each plant 
and their interaction with natural phenomena and other agents. 

We use a simplified physical model of plants, based on dynamic 
constraints, to achieve realism during animation. This plant model 
is very flexible and has been used to model prairies, flowers and 
little bushes, but it can be easily extended to other kinds of plants. 
Efficient rendering and animation are obtained from pre-computing 
several properties of the piant model. JFkoSys allows the user to 
change such properties to create different looking plants based on 
the same model. 

The framework also includes a force field based technique that 
allows any agent to interact with plants spread over a large region. 
This technique allows the real-time simulation of natural pheno- 
mena, such as wind and rain for example, over a large region con- 
taining hundreds of plants. 

The next section describes other techniques for plant modeling 
and simulation, and discusses their applicability to interactive sys- 
tems. Section 3 introduces the Force field technique, and shows 
how it has been used to model wind interaction with plants. Section 
4 describes how the framework handles the modeling, interaction, 
animation and distribution of plants. Implementation issues and ex- 
perimental results are presented in Section 5.  Section 6 discusses 
advantages and limitations of this framework and future work. 

2 RELATED WORK 

Several techniques were developed for modeling and animation 
of plants with outstanding realism [4,7], although computationally 
too expensive for interactive systems, requiring several minutes or 
hours to render complex scenes. 

Particles systems are commonly used to model natural pheno- 
mena, including plants [lo], which are modeled by the path of se- 
veral particles. Complex scenes would require thousands of parti- 
cles, which makes the animation very expensive. 

Level of details (LOD) techniques and pre-computations have 
been used in order to improve performance. The idea is to use more 
realistic models to render objects that are closer to the viewer, while 
less detailed, yet more efficient models, are used for rendering dis- 
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tant objects. Points and lines representations are a very popular 
approach on LOD algorithms, due to their efficiency of rendering 
complex scenes comparing with Splines or even triangles. Deussen 
et al. [3] use this technique to model plants with interactive rates. 

Image based algorithms, such as billboards, are used to model 
complex objects by approximation. A pre-generated image or a 
picture of the real object is mapped onto a tridimensional structure 
as a texture. This technique i s  used in [S, 91 to model and animate 
plants at interactive rates. 

Physically based techniques 1121 are known for producing very 
realistic animations, as welf as, for being very computationally ex- 
pensive. One of such techniques that is particularly relevant for this 
work is Dynamic Constraints [Z]. This technique creates constraint 
forces that act an system's objects until some defined constraints 
are satisfied, and when this wcurs they try to keep them satisfied. 
Section 4.2 describe a simpler extension that considerably enhances 
the performance of this model. 

3 FORCE FIELD: REAL-TIME INTERACTION TECHNIQUE 
FOR COMPLEX SCENES 

The animation of complex scenes, such as those containing hun- 
dreds of plants, by interaction are computationally very expensive, 
thus very hard to implement in real-time. Most current real-time 
solutions trade realism for efficiency. Since vegetation is in general 
not part of the foreground, little or no resources can be allocated to 
animate them. Nevertheless, background animation considerably 
enhances the realism of the scene. 
h [6] a Force field was modeled as a volumetric mesh that divide 

the space into regions. All objects inside a region receive the action 
of the force defined there. The interaction is calculated by the ac- 
tion of external forces. Many agents can act over those regions, 
changing the resultant force there, and the objects receive the re- 
sultant force in each region. This generated poor representation on 
very populated regions while inefficient one on isolated regions. 

Next we present a more efficient algorithm that uses a similar 
representation for the force field but with a LOD algorithm. Section 
3.2 presents a wind model and shows how to adapt it to act over the 
force field. 

3.1 LOD Force Field 

A LOD technique for the Force field was created to enhance 
the efficiency and realism. In this new approach, regions that are 
more populated or closer to the viewer receive interaction a large 
number of force vectors, defining a more detailed interaction. Fur- 
thermore, few forces are considered for distant or less populated 
regions, which implies on more efficient interaction. 

3. I .  1 LOD Technique 

The data structure used for the Force field's information storage 
is a Quadtree. With this structure we are able to create chiId nodes, 
that are represented by smaller volumes, only for regions where a 
greater precision is required. 

The algorithm for the quadtree creation considers an initial big 
region, that represents all scene. Fur each object in the scene four 
new children nodes are created if the node, that this object should 
be, is already occupied by a canfigurable number of objects. In this 
case, h e  objects that belongs to the node that was composed in four 
should be distributed between the chiIdren nodes. These children 
node must have 2 of the volume of the original one. This is done 
on the pre-computation phase, however new objects can be easily 
added later. 

After the Force fieId creation it is considered that all the objects 
inside the same node will receive the action of the same force vector 
defined by the node. 

Using this LOD algorithm we can animate regions with more 
objects using more vectors. However there can be regions with 
many vectors that are not even in the view frustum of the viewer. 

A distance LOD algorithm was also developed to improve the 
technique's performance. This algorithm calculates more precisely 
the interaction on regions closest to the viewer, disconsidering non 
visible nodes. 

The quadtree structure aids this algorithm, since parent nodes 
(regions) can represent four or more children nodes. Thus, 4h - 1 
interaction operations can be spared, where h is the difference of 
height between the parenr node used to represent the children. 

The LOD algorithm first verifies if the node is visible, and if it 
is defines wMch level of the m e  will define the action over this 
area. If the node is far from the viewer, parent nodes can represent 
larger areas with less details. An may with the distance ranges 
defines how many level are disconsidered according to the viewer's 
distance. After this algorithm the Force field is represented only by 
visible ceIls, where some cells may be representing several others. 

Figure 2 shows the Force field with nodes painted in different 
gray scale. Each gray scale defined represents a different height 
of nodes in the tree, the lighter gray scale represents the leaves, the 
next lighterrepresents the parent of the leaves, and so on. The figure 
shows several regions represented by their parents (darker colors) 
due to their distance from the viewer. The darker areas represents 
the non visible nodes. 

Figure 2: Force field quadtree with LOD. The box bellow shows the 
original gray scale of each square. If smaller volumes are repre- 
sented with a darker gray scale, this means that one of its parents is 
being used to represent this node. 

This approach of force interaction is very suitable for plants, that 
are fixed on the ground, which implies that the node of each object 
does not change. Lf the objects are allowed to move, the algorithm 
should need to compute which node that this object belongs to at 
each update of the force field. 

Using the quadtree approach this search is very fast, and if we 
define a fixed and balanced quadtree the current LOD could be de- 
fined by checking the population of each visible region when the 
field is updated. 

The Force field must be constantly updated because of changes 
of the user position and view direction. The technique is very adap- 
tive, both interaction agent and object that receives the interaction 
can be easily adapted to it. In the next section, a wind model is 
adapted to the Farce field as an interaction agent. Section 4 des- 
cribes a plant model that receives the action of the Force field. 
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3.2 Fast wind simulation using Force field 

This section presents a simple wind model, integrated to the 
Force field technique, that achieves fast animation of objects by the 
wind simulation. In this model each wind flow is represented by a 
single vector representing the velocity on each visible node of the 
Force field's quadtree. 

The idea behind this technique is to rely on the Force field re- 
presentation, since it already defines appropriate levels of detail ac- 
cording to their location relative to the viewer. Tbe flow wiII be the 
set of vectors defined in the visible nodes. 

Several flows can stiIl act on a node, and the Force fieId is res- 
ponsibIe for the computation of the resultant force applied on that 
node. 

To calculate the action of the Bow over some node, the flow value 
is approximated at the center of gravity of the node, considering that 
the flow do not change its direction. Figure 3 describes a simple 
scheme of this approach. 

Model 
a 
b 
C 

Figure 3: A wind flow simulation over Force field quadtree. Nodes 
with wind action have a vector describing the resultant force over it. 
(a) An uniform flow; (b) A repulsing flow. 

The wind flows are generated by wind sources, that act like the 
model describes, applying force on the particles. The system allows 
the implementation of sources of any shape, and each source can 
also be under the action of other flows, moving under their action 
or not. This option allows the user to create complicated flows as 
the result of the combination of sources. 

Primitives described in [l 11, like uniform, sink and source flow 
were implemented with realistic and fast results. Furthermore, it is 
possible to define different kinds of flows. Each flow can be acti- 
vateddeactivated using an user interface, or can have a predefined 
duration. Primitive Number of primitives 

triangle 177 
triangle 105 
lines 118 4 INTERACTIVE PLANTS SiMULATlON 

This section describes the techniques that allow the generation 
of interactive simulation of plants, and discusses some of their ad- 
vantages and drawbacks. 

The same geometrical plant model, described on ,Section 4.1, is 
used for all distances to the viewer. However, these models can be 
represented using a smaller number (or even different) primitives. 
Transitions between level of details can be easily handled, avoiding 
abrupt shape changes. 

Section 4.2 presents the animation algorithm, based on a Dy- 
namic Constraints model to achieve realism and a pre-computated 
one integrated to the Force field for interaction and efficiency. Other 
features if this framework are shown in Section 4.3. 

4.1 Plants Modeling 

A vector based model was created to pre-computes the geome- 
try of plants components, such as leaf, flower, stalk, etc. This model 

defines a skeleton, composed by a set of vectors, for each compo- 
nent. A shape is created by changing the properties of these vectors 
such as scale and direction, and then generating triangles or lines 
with the points defined by the model. The basic shape of the skele- 
ton varies for each plant or component, and each can be fully con- 
figured by the user, so that a large variety of plants can be created. 

A physically based model defines the appearance of the models 
by bending their components, simulating the action of gravity over 
them. Some parameters, like stalk width and mass, are used to 
define the model deformation. The resultant models are then pre- 
computed in several different angles. 

As the components of plants of the same species are very simi- 
lar, a small changes in their skeletons can generate a great variety 
of components shapes for that plant. Re-computing the skeletons 
considerably improves the system performance during animation. 
More details about this model can be found in our previous paper 
I61. 

The LOD technique implemented in this framework allows the 
configuration of as many levels the user requires. Its basic idea is to 
select a subset of the pre-computed vectors for each level of detail 
created. This subset is used to create the shape of the final com- 
ponent, according to the distance from the viewer. Furthermore, it 
also allows the usage of triangles or lines to create the model at each 
level. 

The animation technique only updates the vectors that belongs 
to the subset defined by the current level of detail used to render the 
plant. 

Figure 4 shows some results for a rose model, three level of de- 
tails are illustrated. l l e  difference between shapes generated using 
the same vector model is very clear. The complexity of each model 
is described in Table 1. 

Figure 4: Three different representation of a rose model 

Table 1 : Rose model complexity table for each level of detail 

4.2 Plants Animation 

Using the plant component pre-computed models, the animation 
is performed very fast, since we only need to choose the model, 
given the interaction received from the Force field. The changing 
of models automatically defines the animation. 

To generate a smoother animation with more realistic move- 
ments we use the technique of Dynamic Constraints. Constraint 
forces can animate models by moving their components to a de- 
sired configuration. The movement has different accelerations and 
velocities which warrants realism of the animations. 

All the components are defined with an initial position. An elas- 
tic farce (gel) opposes to the changing of this position. This force 
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only exists when some external force displace the component from 
its initial position, and it becomes stronger as the displacement in- 
creases. figure 5 illustrates the behaviour of Fe( for a component 
represented by its main axis. 

i. 

1. 2. 3. 4 

Figure 5: (1 1 The component in its initial position. (2) The component 
receives the action of a external fyce @ E .  gel tries to restore the 
component's initial position. (3) FE incre_ases an! the component 
bents more until the equ9brium between FE and Fel is established. 
(4) FE decreases, thus Fel take the component closer to its original 
position. 

Subsection 4.2.1 explains the simplifications assumed to create 
a model based on Dynamic Constraints technique that can be used 
in interactive applications. The animation algorithm is described i n  
Subsection 4.2.2, it uses both modeling pre-computations and Force 
field to generate faster and more realistic results. 

4.2.1 A Dynamic Constraint Model for Plants 

. This section introduces a variation of the Dynamic Constraints 
model [2]  to animate plants, discussing some of the possible sim- 
plifications required for an interactive execution. Equation 1 defines 
a simple constraint force calculation. 

constraints j bodies i 

bodies  i 

This is a very complex equation to be solved for each plant com- 
ponent in an interactive system. In the plant model we assume that 
the torque does not exist, which implies that T ,  Hand A, all related 
to the torque of the body, are null. T i s  a time constant that is used 
IO control the time spent for the constraint to be satisfied. 

We define the action of the forces over a component at it cen- 
ter of mass, similar to the Point-to-Nail constraint described in [2]. 
This example illustrates a body under effect of gravity and without 
rota$onal terms. 

D is the distance of the component center of mass from the cur- 
rent position to its initial position. bI1) is defined as the rate of 
change of 6, the velocity of the movement (fi(l) = 3.8(') is the 
acceleration of the movement and is defined by equation 2. 

bodies i 

Let be the position of the center of mass when the constraint 
is satisfied and 20 the current position (constraint point), the devi- 
ation 5 is given by: b = /7 ~ 20 

As only one constraint force, Fc, was defined and one external 
force, &, is retumed by the force field as the resultant force that 
acts over the component, equation 1 can be rewrikd with the as- 
sumptions and notations above. 

Furthemore, from 2 we have p = 0 and r = l/m. The con- 
straint force needed to take the body from 2 to .& is show bellow: 

(3) 
- - 2 - 1  + -  Fc = -FE - -mu - -m(X - X O )  

T 7-2 

The Dynamic Constraint model calculates the constraint force 
needed to take the body to the constraint point defined. Observe 
that the constraint force may be decomposed into three components: 
one opposing to the extemal force, one opposing to the body's ve- 
locity and another that pulls the body towards the direction of the 
constraint point. 

The framework uses the same model but instead of calculating 
the constraint force, it defines a constraint force to get the object 
position when the forces reach the state of equilibrium. This con- 
straint force is defined as an elastic force given by equation 4, where 
PC is a component property defined by the user. 

(4) 

The problem is then simplified to find out 2, given the compo- 
nent center of mass at its initial position (XO),  the external force 
( R E ) ,  the constraint force (FC), the previous component velocity 
(3 and the time interval passed since last position update (T) .  

From 3 and 4 we have: 

1 - -  - 2  
(PC + - p ) ( X  - X o )  = -FE - -mv' 

7 7 

Let p = PC + $vi, then 5 describes the deviation of the com- 
ponent center of mass as a function of the time elapsed, external 
force and current velocity. Calculations of constants related to the 
component can be performed only once to optimize animation time. 

( 5 )  

The meaning of equation 5 may be illustrated by the following 
sentence: "The deviation of center of massfrom current to initial 
position is due to the action of some external forces a&or as result 
of a previous movement". Therefore, if some component is not 
on its initial position, some external force or previous movement 
caused the deviation. 

We have calculated the effects of the constraint force for subin- 
tervals of r ,  and the position the leaf will be in each time interval. 
This creates a more realistic animation since the leaf will move un- 
der different velocities and accelerations. 

4.2.2 Fast Animation Algorithm 

Equation 5 is very simple compared to 1, however, if it is applied 
to many plant components the performance of the system may de- 
generate. This section shows how to animate plants using the tech- 
nique described in the previous section. 

are calculated once for each 
component, because both depend only on 7 and some properties of 
the components. This cache of values avoid many redundant calcu- 
lations. The deviation described in equation 5 can be calculated by 

At each time interval 7, p and 
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the product of a “constant” (-;I and the external force ($E) added 
to the product of another “constant” (%) and the previous move 
velocity (3. 

The animation is performed by two algorithms, one that updates 
the plant components according to the Force field, and other that is 
responsible for rendering the appropriate model. 

The first algorithm obtains the external force from the Force field 
for each plant visible (on a visible node of the Force field). The 
deviation D is defined by the equation 5, given the external force 
action; current velocity, assuming it is in the direction of axis P; 
and the cached values of - $ and e. 

The component’s displacement angle is calculated using the de- 
viation D. The current velocity must be estimated (defined by D/r) 
for the next iteration. 

If the angle of displacement was changed, the second algorithm 
i s  called. It defines the appropriate mode1 to render the compo- 
nent, according to its distance, and get the vector model (from pre- 
computed set of vectors), according to the new displacement angle. 

The animation results are illustrated in Figure 6 

6 
C 

Figure 6: Animation of flowers and grass. 

yellow flower 72 52 37 
purpleflower 78 58 39 

4.3 Other framework’s €eatures 

The kamework also have a simple terrain mesh generator and a 
plant distribution algorithm that considers some properties of the 
terrain, like irrigation and nutrients and their influence over each 
plant specie. 

The algorithm creates plants concurrently for different plant dis- 
tributions. One plant can occupy the area that other one could be 
occupying, removing the nutrient or water needed for the develop- 
ment of other distribution. The algorithm verifies if the terrain has 
the proper conditions of development for each plant distribution 
configured. 

LOD 1 

5 THE FRAMEWORK 

0 a 10 meters I triangle 

5.1 Implementation hues  

JEcoSys was developed using Java’ because of i ts portability and 
scalability. It can be easily adapted to Internet applications (Ap- 
plets’ and Java Web Start Technolog?) and has several libraries 
that can be used to aid some system’s functionality. Java Threads 

c2 
c3 

http://java.sun.com 
htip://java.sun.comlapplets/ 
ht~p://java.sun.co~p~uc~~a~webstar 

75 0 0 
0 loo 100 

are used in other to process the Force field, simulation and anima- 
tion of plants concurrently. 

The system’s architecture is based on object-oriented concepts, 
which makes it very reusable and adaptable to other applications 
or algorithms. The system is also very extensible, since it defines 
several Java interfaces and abstract classes. New techniques can be 
added or replace the ones defined in order to solve another problem 
or just for comparison of techniques. 

Java 3DTM4 [ l ]  API (Application Programming Interface) was 
used for the system’s implementation. The system’s parameter in- 
put is done by using a XML (Extensible Mark-up Language)’ based 
language. 

5.2 Experimental Results 

This section presents some test results that show the efficiency of 
the algorithms presented in this paper. The system prototype was 
tested on a Pentium III 900 MHz with 512 Mb and a 64Mb graphics 
video card. The results are presented in tables that allows compari- 
son, analysis and discussion of  the performance of the framework’s 
components. 

Three different kind of plant distributions were created for test- 
ing. Table 2 describes the geometrical complexity of each plant. 
The three level of details were used are described on Table 3. 

Plant I Type I u)DI  I LOD2 I LOD3 
A I grasstuft I 250 1 IS0 I 175 

Table 2: Geometrical complexity of ptants used for the system’s 
analysis. 6 and C have similar complexity and represent only one 
flower. The grass tuft (A) is composed of 25 leaves. 

Table 3: Level of Detail’s description 

Three different scenes were created using these plant models. 
The scenes properties are described in Table 4 and shown in Figure 
7. The following subsections use these test scenes to evaluate the 
performance of the system. 

Scene I # o f A  I #ufB  1 # a f C  
c1 I 50 I 15 I 15 

Table 4: Test scenes description. 

0 

5.2.1 Performance x Geometrical complexity 

Table 5 shows the system’s performance analysis given the geo- 
metrical complexity of scenes. The number of primitives used is 
an approximation since it changes when the user moves along the 
scene, or the view direction changes. The measure is given in 
frames per second (fps) and considering that both Force field and 
animation algorithms are activated. 

h t t p : / / j a v a . s u n . c o ~ p ~ u c ~ j a v a - ~ e ~ ~ 3 D /  
5 h n p : / / w w w . w 3 . 0 ~ U  
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c1 

cz 

c3 

Scene 
c1 
C2 
C3 

SI 52 53 
50&10fps 443zlOfps 29*11fps 
52 *OS fps 42 f 0 7  fps 26 f 0 9  fps 
49 i l l  fps 36 h15 fps 33 f 0 6  f p s  

The results show that the system’s performance depends on the 
number of primitives and plant components being animated (just 
the movement of the primitives have a significant cost as shown 
in Table 7). For example, scene C3 has a better performance than 
c2, despite flowers have a more compkx geometry, because A is 
composed by 25 componenrs (leaves) and B or G only by 7 compc- 
nents. The results have shown that the system can animate around 
4000 leaves of grass or 400 flowers in real-time in a typical personal 
computer. 

Scene 
Cl 
c2 
c3 

5.2.2 Force field analysis 

The Force field must handle efficientilly interaction, its benefits 
should be greater than the time spent for it treatment. The system 
has been tested with a random based animation, because with the 
Force field disabled there would be no animation. Table 6 shows 
the results. Frame rate 1 stands for Force field active, while Frame 
rate 2 for Force field disabled. 

N # of cFiangles N #of lines Frame rate 
7300 4000 29 *11 fps  
10000 4400 2 6 i ~ 0 9 f p s  
3000 3750 33 &06fps 

44 3 ~ 6  f p s  

Table 6: Force field performance. 

During the tests, the viewer was moving aIong the scene and the 
plants by the action of the animation technique. The results have 
shown that the Force field technique is very efficient, therefore it 
can be used in other systems that require real-time generic interac- 
tion. 

5.2.3 Performance x Animation algorithm 

Table 7 describes the system’s performance for three situations: 
SI - static scenes (without animation, but user movement); S2 - 
random animation; and S3 - framework’s animation technique. The 
Force field is activated on all situations. 

The results have shown that the physically based animation algo- 
rithm have a good performance. Even on scene Cf the number of 
plants created would not be much more greater than the obtained by 
this system, for real-time results. The results from scene C2 (that 
represents the time spent only for the plants movement) and C3 are 
very similar. The time variation is very small, considering that a 
realistic animation based on a physical model is used in scene C3. 

6 CONCLUSlON AND FUTURE WORK 

We have presented JEcoSys, an extensible, highly adaptable, and 
efficient framework for the simulation ofplants. The framework al- 
lows real-time user interaction with the simulation, and was devel- 
oped completely in Java. 

JEcoSys uses a simple physical model of plants. Interactive per- 
formance is basically achieved from the pre-computation of several 
parameters and the use of Level of details to control the simulation. 

The study of several techniques has allowed the selection of the 
most suitable ones for each specific problem. Some of these were 
successfully extended or adapted to satisfy more realistically and 
efficiently the proposed problem. One good results achieved was 
the development of independent techniques for interaction and an- 
imation that can be used to solve other similar problems. Further- 
more, when they are used together, in JEcoSys, the performance 
has been enhanced. 

The framework also includes a Force field based technique that 
may be used for fast interaction over large scenes, with objects 
spread all over it, by several different agents. It was used to model 
the interaction of plants with an agent that simulates the wind. 

The animation technique, based on a dynamic constraint model, 
generates realistic results and is still efficient, since some simplifi- 
cations and pre-computations are assumed. It also can be used by 
other articulated models for fast animation. 

Experimental results have shown that JEcosys is able to simulate 
complex scenes containing hundreds of tufts of grass, flowers and 
simple bushes in real-time, using a typical personal computer. The 
quality of the simulation can be seen in Figure 8. 

The framework details are available at my hamepage: 
<http://www.ime.usp.br/lyer. We hope this framework will help 
other researchers to prototype other highly efficient algorithms for 
plant simulation. For further information please check my master 
dissertation [SI, unformnatelly it is only available in Portuguese. 

Our main goal is to continue the development of JEcoSys to im- 
prove the efficiency and realism for simulating plant ecosystems. 
Some of these enhancements include the use of real plants tex- 
tures, collision detection treatment, realistic biological data; and an 
image based algorithm for modeling. 
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Figure 8: Plants animated in real-time. 
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