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a b s t r a c t

This paper proposes a method to locate and track people by combining evidence from multiple cameras
using the homography constraint. The proposed method use foreground pixels from simple background
subtraction to compute evidence of the location of people on a reference ground plane. The algorithm
computes the amount of support that basically corresponds to the ‘‘foreground mass” above each pixel.
Therefore, pixels that correspond to ground points have more support. The support is normalized to com-
pensate for perspective effects and accumulated on the reference plane for all camera views. The detec-
tion of people on the reference plane becomes a search for regions of local maxima in the accumulator.
Many false positives are filtered by checking the visibility consistency of the detected candidates against
all camera views. The remaining candidates are tracked using Kalman filters and appearance models.
Experimental results using challenging data from PETS’06 show good performance of the method in
the presence of severe occlusion. Ground truth data also confirms the robustness of the method.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

This paper presents a multiple camera solution to the problem
of tracking a group of people. Multiple camera views can be used
to recover 3D structure information and solve occlusion in environ-
ments with several individuals. Recently, several works have sug-
gested a simpler approach that can be used with a network of
sparse uncalibrated cameras based on the homography constraint
(Eshel and Moses, 2008; Fleuret et al., 2008; Hu et al., 2006; Kim
and Davis, 2006; Santos and Morimoto, 2008). The homography
constraint establishes that multiple projections of the principal
axis of an elongated object using a homography from each camera
view q to the ground or reference plane P intersect at the position
of the object in the reference plane (‘‘ground position” of the
object).

Kim and Davis (2006) use the homography constraint within a
particle filtering framework for people tracking. First, a set of par-
ticles that correspond to ground positions is draw from the filter
dynamics. Each particle is associated with an appearance model
(Senior et al., 2006) to perform people segmentation in each cam-
era view. Once foreground pixels are segmented and classified into
single objects (persons), the principal axis of each person is com-
puted and the homography constraint is used to compute their
locations. The main drawback of the system is its requirement that
individuals must initially appear as isolated foreground blobs to
proper modeling.
ll rights reserved.
To detect multiple people using multiple camera views Hu et al.
(2006) use the homography constraint for pairs of cameras. By pro-
jecting the principal axis of a person from camera view q to p, the
likelihood between two axes from these different views is com-
puted comparing their intersection with a predicted ground posi-
tion. To compute this point the authors combine single view
foreground segmentation with Kalman filter based tracking. The
likelihood is used to drive the axis correspondence process. The
system relies on individual segmentation, so inter-object occlusion
can degrade the axis location performance.

Eshel and Moses (2008) use the homography constraint in sev-
eral planes parallel to the ground plane, searching for heads in the
higher planes. All camera views are mapped using homographies
to a reference plane and intensity correlation is used to detected
candidate heads. A nearest neighbor approach is applied to find
correspondences along time, producing tracks. In a further step,
tracks are combined in individual trajectories by the use of six dif-
ferent measurements to evaluate track overlap, distance, and
direction. According to authors, people dressing in similar colors
are a main source of false positives, a natural drawback from the
correlation approach. The cameras are placed at high elevations
and the authors report that the performance of the system deteri-
orates considerably when less than five cameras are used.

Fleuret et al. (2008) use a probabilistic framework to perform
simultaneous detection and tracking. Their model is a combination
of a simple motion model with an appearance model. The appear-
ance model is composed of an RGB color density and a ground
plane occupancy map. In the occupancy map, the ground plane is
partitioned into a regular grid and the probability of occupancy
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Fig. 1. Block diagram of the multiple person detection and tracking system.
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of each grid cell is estimated using results from background sub-
traction. This occupancy model is a conditional distribution be-
tween the foreground and the occupied cells configuration. The
Viterbi algorithm is used to find the most likely trajectory for each
individual and a greedy heuristic is applied to optimize one trajec-
tory after other. For reliable detection and location, each person
must be seen as an individual blob in at least one view.

Previous methods for single person segmentation are affected
by two main problems. First, partial and total occlusion are com-
mon in crowed scenes such as the one in Fig. 3(b). In places such
as airport halls or train stations, people frequently walk in small
groups most of the time, causing occlusion in all camera views.
Second, when color models are used for segmentation, people
dressed with similar colors become another source of problems
(Hu et al., 2006).

The main contribution of this paper is the definition of a novel
algorithm based on the homography constraint that does not rely
on single view segmentation of the subjects or previous tracking
information. Instead of a segment-then-locate approach, we pro-
pose a locate-then-segment approach, integrating available infor-
mation of all cameras before any detection decision. This paper
extends our previous work presented in Santos and Morimoto
(2008) in several ways. First the people detection method was
made more robust to false positives with the introduction of a
new filtering algorithm. This paper also introduces a multiple per-
son tracking algorithm based on Kalman filters and appearance
models, and more extensive experimental results are presented
using ground truth tracking data.

Because the system does not require previous object segmenta-
tion for people detection, our work has some similarities with the
very recent work of Khan and Shah (2009). Their work use the
homography constraint to fuse foreground likelihood information
from multiple views to resolve occlusions and localize people on
a reference scene plane. Similar to Eshel and Moses (2008), Khan
and Shah (2009) also rely on multiple planes parallel to the ground
to improve the robustness of the method. Detection and tracking
are performed simultaneously by graph cuts segmentation of
tracks in the space–time occupancy likelihood data.

In our method, multiple view perspective geometry and the
homography constraint are applied to collect evidence of people
presence from each camera view. Our method elegantly integrates
the information of all parallel planes by projecting the foreground
directly on the reference plane and accumulating the evidence
from multiple cameras. Occlusion and people detection are solved
simultaneously at each time using the accumulated evidence from
all cameras. We have tested the method using very challenging
data from PETS’06 with good results. The next section describes
the method in detail. Experimental results are presented in Section
3. Section 4 concludes the paper.
2. Multiple person detection and tracking

Fig. 1 shows a block diagram of our proposed multiple person
detection and tracking system. Each static camera q feeds a back-
ground subtraction module. The background color distribution
for each pixel is modeled using mixture of Gaussians. The seg-
mented foreground is used to compute evidence of people pres-
ence for each pixel on the reference image P (floor plane). Our
algorithm computes the amount of support that basically corre-
sponds to the ‘‘foreground mass” above each pixel. Therefore, pix-
els that correspond to ground points have more support.
Perspective is carefully considered to accurately detect objects
near and far away from the cameras. The support computed from
each camera view is transformed to the ground plane using the
appropriate homography. The ground plane accumulates the evi-
dence from all views. People detection is performed by locating re-
gions of local maxima in the ground plane accumulator. Once
people candidates are detected, appearance models are computed
for each candidate. We have developed an efficient algorithm to
match the detected candidates with tracked objects. Each tracked
object is represented by its appearance model and an associated
Kalman filter. Trackers that are assigned to candidates during the
matching process are updated. Observations that do not match
any tracker are potential new targets, and trackers that do not re-
ceive a match are considered lost.

2.1. Background subtraction

The color distribution for each background pixel in time is mod-
eled as a mixture of Gaussian distributions (Stauffer and Grimson,
1999). This Gaussians mixture approach is able to deal with multi-
ple modes on the background color distribution probability.

A pixel x presents color f(x), represented in rgI space (normal-
ized red, normalized green and light intensity). Normalized color
is less sensitive (compared to RGB space) to small changes in illumi-
nation caused by shadows (Wang and Suter, 2005).

The color distribution of a pixel is modeled by K Gaussians. The
k-th Gaussian presents mean vector lk ¼ hlr

k;l
g
k ;l

I
ki, a diagonal

covariance matrix Rk and a weight wk, that correspond to the prob-
ability that the pixel has a subclass k. An expectation–maximiza-
tion (EM) algorithm combined to an agglomerative clustering
strategy (Bouman, 1997) is applied to estimate K and the mixture
parameters of each color distribution. Because the training set is
not free from moving objects, the background distribution is repre-
sented by the Gaussians whose weight wk is greater than a thresh-
old Tw.

Each pixel xi is compared against all subclasses in the back-
ground mixture model. The pixel is classified as foreground if:

fcðxiÞ � lc
k

�� �� > Tb � rc
k ð1Þ

for all channels c = r, g, I, where Tb is a decision boundary threshold
and rc

k is the variance in channel c found in the diagonal matrix Rk –
independence between channels is assumed for simplicity.

Shadows are a common source of artifacts. We use an additional
test, based on Wang and Suter (2005) work, to perform shadow re-
moval. Let fI(�) denotes the intensity of a pixel in f. If xi chromaticity
fits the pixel r and g models and

Tshadow 6
fIðxiÞ
lI

k

6 1:0;
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where Tshadow is a threshold, then xi will be classified as background.
The idea is that a background pixel will present just a fraction of its
expected intensity value within shadow regions.
2.2. Support computation

Let P be the ground or reference plane, xq be a foreground pixel
of camera q corresponding to the projection of the point X 2P, and
let the pixel relation y above x be true iff the foreground pixel y
lies on the half line defined by the ray xþ up

!
, and false otherwise,

where ~up is a unit vector pointing to the up direction.
Just for illustration purposes, consider a single person scenario

represented by a line segment L, shown in Fig. 2. Let Xi 2P be
the bottom end of L, lq the projection of L for camera q, and xq

i

the projection of Xi 2 lq. Then all pixels xq
j 2 lq such that i – j, are

above xq
i . We define support Sðxq

i Þ as the number of foreground
pixels above xq

i .
Notice that Sðxq

i Þ can be computed for any xq
i regardless of a true

correspondence between xq
i and a ground point in P because only

the above relation is used. The vanishing point in the vertical
direction can be used to compute the true ~up direction for every
pixel xq. For a blob corresponding to the segmentation of a person
using the background subtraction algorithm, the support of every
pixel xq

i within the blob can be computed and back-projected onto
the ground plane. Regions on the ground plane with large local
support values are good candidates for the location of a person.
(a)

Fig. 2. (a) The support of a point xq
i in the image plane is the amount of pixels of the objec

center. The support is a speculation about the amount of ‘‘mass” of an object that ma
interpretation of the references to colour in this figure legend, the reader is referred to

(a)

Fig. 3. (a) Perspective transformation for two cameras p and q with projection centers Cp

The bright areas correspond to segmented foreground. The vertical bars correspond to t
2.2.1. Perspective normalization
Due to perspective, simple pixel counting to compute Sðxq

i Þ is
not accurate. Fig. 3(b) shows six vertical bars of different lengths.
All of them correspond to the same height h of the person standing
at xq

r but at different locations xq
i . Therefore, in order to use support

to compute object locations, the support values must be normal-
ized to compensate for perspective effects. Using an object of
known height hr as reference, seen by every camera q at xq

r , we
pre-compute a normalization factor gðxq

i Þ, for all xq
i , that corre-

sponds to the inverse of the height hr when the reference object
is placed at the ground position corresponding to xq

i .
For any camera q, let xq

r be the position of the reference object
with height hr. Let x̂q

r be the projection of xq
r onto a parallel plane

hr units far from P, as shown in Fig. 4. Let d(i,j) denote the distance
in pixels between any two points (i,j) and assume that dðxq

r ; x̂
q
r Þ is

known (the reference height). Then the height dðxq
i ; x̂

q
i Þ of the ob-

ject when placed at xq
i can be estimated using the cross-ratio

invariance property of projective geometry (Criminisi et al., 2000).
Criminisi et al. (2000) applied the cross-ratio to find the

relation:

hr

hq
¼ 1�

d x̂q
r ; c

q
r

� �
d xq

r ;vq
� �

d xq
r ; c

q
r

� �
d x̂q

r ;vq
� � ; ð2Þ

between the reference height hr and the camera height hq (the dis-
tance from the camera center to the reference plane P) when the
reference object is located at xq

r . The points cq
r and cq

i are the projec-
(b)

t seen above it (highlighted in yellow). (b) Projection on camera q – Cq is the camera
y be relying on the position Xi in the ground plane. See the text for details. (For
the web version of this article.)

(b)

and Cq and vanishing points vp and vq. (b) Perspective correction and height filtering.
he height of the person standing at xq

r seen at different locations xq
i .



Fig. 4. Distances for the computation of the perspective normalization factor for the
reference position xq

r and an arbitrary position xq
i . l is the ground plane vanishing

line (horizon seen by camera q) and vq is the vertical vanishing point.
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tions of xq
r and xq

i onto the ground plane vanishing line l, as seen in
Fig. 4.

A similar equation can be computed when the reference object
is placed at xq

i :

hr

hq
¼ 1�

d x̂q
i ; c

q
i

� �
d xq

i ;vq
� �

d xq
i ; c

q
i

� �
d x̂q

i ;vq
� � : ð3Þ

Now consider aðxq
i Þ ¼ d xq

i ;vq
� �

and bðxq
i Þ ¼ d xq

i ; c
q
i

� �
. Then terms

on x̂q
i can be rewritten as

d x̂q
i ;v

q
� �

¼ aðxq
i Þ � gðxq

i Þ; ð4Þ

d x̂q
i ; c

q
i

� �
¼ bðxq

i Þ � gðxq
i Þ: ð5Þ

Defining:

c ¼
d x̂q

r ; c
q
r

� �
d xq

r ;vq
� �

d xq
r ; c

q
r

� �
d x̂q

r ;vq
� � ; ð6Þ

and using the equality between (2) and (3), it results that:

gðxq
i Þ ¼

aðxq
i Þbðx

q
i Þð1� cÞ

aðxq
i Þ � bðxq

i Þc
: ð7Þ

The value of gðxq
i Þ is pre-computed for each xq

i and used as a
perspective normalization factor for the computation of support.

2.2.2. Bounded support computation
Because objects occlude each other, blobs segmented using

background subtraction might be composed of several objects.
Large elongated blobs produce large number of false positives
due to false high support values. By limiting object heights within
an appropriated range (hmin,hmax), the maximum normalized sup-
port value is also bounded and many of the false positives candi-
dates are filtered out. Small objects with low support values can
also be filtered using hmin.

Thus a candidate object for tracking cannot present support be-
low the minimum height hmin or above a maximum hmax. Fig. 3(b)
illustrates the idea. Bright areas mark the foreground segmented
from camera q. The vertical bar directions are defined by the
ground points xq

i and the vanishing point vq. The bar lengths in pix-
els correspond to hmax. The support of xq

i is the amount of fore-
ground pixels along its corresponding bar. Observe that the point
xq
1 does not present any support and that xq

2 , xq
3, xq

4 and xq
5 present

similar support values. Observe that the line of three people under
occlusion would cause unrealistically high support values in a large
region.

The bounded normalized support Sqðxq
i Þ can be computed effi-

ciently for all pixels of a line defined by xq
i and vq (i.e., a line orthog-

onal to the ground plane P) as follows.
Let s ¼ hxq

1; . . . ; xq
ni be the line segment obtained by constrain-

ing the line by the image frame, as seen in Fig. 5. Algorithm 1
computes the support by counting the number of foreground pix-
els projecting onto xq

i and using the perspective normalization
factor gðxq

i Þ to get the support value in reference units. The max-
imum support is constrained to filter out objects extending be-
yond hmax.

As an example to better understand the algorithm, consider that
at location xq

280 there are 240 foreground pixels above, i.e.,
F[280] = 240, as seen in Fig. 5. According to the pre-computed val-
ues of gðxq

280Þ and hmax, the tallest allowed object at location xq
280

would cover up to 120 pixels and reach pixel xq
160 (see line 1 of

the algorithm). Since F[160] = 140 (there are 140 foreground pixels
above xq

160), there are 100 foreground pixels between xq
280 and xq

160.
This number, normalized by gðxq

280Þ and bounded, is the support
due to the evidence at xq

280.
Background segmentation errors affect the correct computation

of an object’s support. For example, when people are dressed using
colors similar to the background color distribution, parts of their
bodies are misdetected. The foreground pixel counting used in
Lines 4–8 address this issue and does not constrain support com-
putation to perfect background classification.

Fig. 6 shows support results for three different cameras. The fig-
ure shows support peaks near people’s feet, as expected. Some
false foreground detection seen in the top row images are caused
by shadows, that produce high support values in regions of the
ground plane. Although shadow artifacts can become an issue in
single view processing, multiple view integration is able to reduce
this problem. If a region with no people presents some support
from shadow in a camera view, it is unlikely the same will happens
in the other views.

Algorithm 1: Algorithm to compute the support Sqðxq
i Þ for all

points xq
i in segment s.

1: procedure SUPPORT ðs ¼ hxq
1; . . . ; xq

ni;hmin;hmax;gÞ
2: F[0] 0
3: for i 1,n do
4: if xq

i is FOREGROUND then
5: F[i] F[i � 1] + 1
6: else
7: F[i] F[i-1]
8: end if
9: j  i� hmax � g½xq

i �
10: if j > 0
11: h  ðF½i� � F½j�Þ=g½xq

i �
12: else
13: h  F½i�=g½xq

i �
14: end if
15: if h P hmin

16: Sqðxq
i Þ  h

17: else
18: Sqðxq

i Þ  0
19: end if
20: end for
21: return Sq

22: end procedure
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2.3. Integration of multiple camera views
Fig. 5. An iteration of Algorithm 1 for (i = 280). Line 9 inspects the pixel x160, which
corresponds to the height of the tallest expected object. Since the value of
F[140] = 140, there must be 100 foreground pixels between x and x .
In the absence of occlusions, the support information computed
from a single camera provides sufficient evidence to locate people
on the ground plane, though a certain number of false detections
and misses might occur. The detection algorithm can be made a
lot more robust by combining the evidence from all cameras that
see a particular ground region.

For example, in Fig. 3(b), a false ground point xq
3 has high sup-

port but it is unlikely that the same occurs in another camera. In
fact, a pair of occluding objects seen in camera q might show as
occluding objects for a different camera p iff the objects are along
the baseline of the two cameras.

The homography matrix Hq maps ground points xq
i in image

plane q to ground points Xi of the ground plane P according to:
Fig. 6. (a) Input images for the support algorithm. (b) Observe th
Xi ¼ Hqxq
i : ð8Þ

Using a set of points on the image plane and a set of correspond-
ing points in P, Hq can be estimated by a direct linear transforma-
tion algorithm (Hartley and Zisserman, 2004).

Let Sq xq
i

� �
be the support computed at point xq

i for camera q. All
support data from Q cameras can be integrated on P by

AðXiÞ ¼
XQ

q¼1

Sq H
�1
q xi

� �
; ð9Þ

where A is the accumulator image (Fig. 7). Objects can be located by
segmenting regions of A that present large support values.

A threshold TS is used to select points Xi 2P presenting good
support values. The threshold parameter at Xi 2P takes into con-
sideration hmin and the number of cameras able to see that loca-
tion. Points of local maxima are computed by a mean-shift
procedure. Mean-shift blurring process (Cheng et al., 1995) moves
data points in the gradient direction of a smoothed version of the
original function. Applied to A, the process integrates the support
information within a neighborhood of Xi.

Let G be the set of found local maxima points. Points Xi 2 G cor-
respond to real people locations and some false positives. Main
sources of false positives are severe occlusion in all views and peo-
ple aligned in the baseline of a pair of cameras. The idea to filter the
false positives is to select a subset of G that, under total occlusion
relations, is able to ‘‘explain” the occurrence of the remaining
points.

Points in G are labeled UNSELECTED and inserted in a priority
queue ordered by A(Xi). We pop the queue, marking the current
point Xi as SELECTED. Then we visit all the points Xj that are occluded
by Xi. If Xj is UNSELECTED and it is occluded by a SELECTED point in all
views, it will be labeled COVERED and removed from the queue.
at the support peaks at the ground positions of each person.



Fig. 7. Multi-view integration for 3 cameras. Homographies are used to warp support from the original camera view to the floor plane P. The accumulated support A(Xi)
peaks on true object positions.
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We repeat this procedure until no more UNSELECTED points are avail-
able. SELECTED points are returned as people location candidates and
will be further used as measurements by the tracking module. This
procedure ensures that the removed false positives are fully justi-
fied as spurious interactions from evidences of people in other
locations.

2.4. Object tracking

Our system tracks multiple objects simultaneously using one
Kalman filter per object. A tracked object (person) is represented
by a multi-view appearance model. The model consists of two
RGB color histograms for each camera view, corresponding to the
top and bottom parts of the object (shirt and pants). Each model
also keeps a foreground and occlusion mask for each camera. The
color histograms, foreground, and occlusion masks are updated
at every frame.

Before updating the tracker at every new frame t, appearance
models for the detected target candidates (called the observation
appearance models) are build using the list of candidate positions
computed as described in previously. A bounding box for each
camera view is computed from the position and estimated height
(support) of the candidate object. The RGB color histograms, fore-
ground, and occlusion masks are computed using such bounding
boxes.

To efficiently determine the assignment of observations to tar-
gets all possible assignments we have developed the following
greedy algorithm.

First candidate positions zi are paired with all trackers Tj that
expects the tracked object to be at a vicinity of zi. All such pairs
are inserted in a priority queue according to the probability p(zijxj,
rj), where zi is the observation position on the ground plane and xj

and rj are respectively the state and covariance matrix of the Kal-
man filter Tj.

Next the first pair of the queue is popped and their appearance
models are used to test if the observation actually matches the
tracked object. An observation matches an object iff there is good
similarity between their color models. Color similarity is computed
using histogram intersection. In case the tracker is updated using
the matched observation, the object appearance model is also
updated using the observation appearance model and a learning
factor alpha as follows. Let Hq, t[b] be the histogram value for bin
b in the a color model of camera q at frame t and let Ho be the cor-
responding observation model. Then

Hq;tþ1½b� ¼ ð1� aÞHq;t ½b� þ aHo
q;tþ1½b�; ð10Þ

Observation zi that are matched are marked as USED, so no other
tracker will be updated using zi. The process continues until the
queue is empty. The greedy algorithm might not assign all observa-
tions to all trackers. Observations that are not assigned to a tracker
correspond to potential new objects so a new tracker is created.
Each tracker Tj keeps a counter to register the number of successful
assignments, and a flag. Upon creation new trackers receive a NEW

flag and their appearance models initialized to the observation
appearance models.

After the counter registers a large enough number of assign-
ments, the tracker flag is updated to ON. At this moment, the track-
er is assumed to be following a real subject. If a tracker is not
assigned to any observation, its flags is updated to LOST. A LOST

tracker is updated using the Kalman prediction and its covariance
matrix is increased to enhance the chances of the tracker to find a
match in the next frame. A tracker that keeps a LOST flag for a long
time is finished and removed from the list of trackers. Trackers pre-
senting the ON flag have priority on the assignment queue and LOST

trackers have priority over NEW ones.
3. Results

The system was tested using the S7 dataset from the PETS 2006
Benchmark Data (Thirde et al., 2006). This dataset presents video
recorded at Victoria Station in London, UK. Video from three cam-
eras was used, demonstrating that just a few cameras are enough
to produce good detection and tracking results. We used half of
S7 frame sequence in our tests (the last 1500 frames of the original
3000 sequence – about 1 min of video). The sequence presents 22
individuals walking in a hall. About 1/3 of the hall area is covered
by three cameras. The baseline of the two cameras that cover the
remaining area crosses the entire hall, creating severe occlusion
situations.

Image points were manually selected to compute the vanishing
points of each camera and the appropriate homography matrix to



T.T. Santos, C.H. Morimoto / Pattern Recognition Letters 32 (2011) 47–55 53
the ground plane P. The height of a person was used to define the
reference height unit. Parameters were setted manually to obtain
satisfactory results in a 10 s long sample of the video in question.
The allowed height range was set to [0.6,1.1] units (that is 60–
110% of the reference man’s height). An unit flat kernel of width
19 pixels was applied in the mean-shift local maxima detection
procedure (1 pixel �2 cm in the reference ground plane image).
Trajectories from the tracking module shorter than 50 frames
(about 2 s) are considered false positives and removed.

3.1. Object detection

Figs. 8 and 9 show results for two situations presenting occlu-
sion cases. The first row displays the floor plane square texture pat-
tern and the detected object positions. These points are classified
as people’s ground points and are shown as red dots in the next
row. Homographies are used to map the ground points back to
each camera view.

The subjects of interest are the people visible on the floor plane
diagram in the first row of Fig. 8. Frame 3300 in Fig. 9 shows an
Fig. 8. Local maxima correspond to location of people on the reference ground plane (m
back to each camera view.
example of occlusion under three views. The proposed system is
able to detect each individual successfully.

3.2. Tracking

Ground truth was manually created to evaluate tracking results.
The position of each individual was manually annotated for 150
frames, 10 frames apart for the 1500 frames of the S7 PETS’06 se-
quence. Consistent labeling was associated to each person. Table 1
summarizes the results. All 22 subjects were successfully associ-
ated to one or more tracks produced by the system. Only one of
the tracks does not match any subject. Ideally, one tracker should
be associated to one person for the whole sequence. The proposed
system produced an average of 1.32 tracks per trajectory, which
corresponds to few errors during tracking. There was only one
track exchange amongst all trackers for the whole sequence that
took place between two near individuals, seen only by 2 cameras,
in occlusion and aligned to the cameras baseline.

Fig. 10 shows the root mean square deviation between the esti-
mated trajectories and the ground truth positions for each subject.
arked with dots). The homographies Hq are used to map the people’s ground points



Fig. 10. Root mean square deviation for PETS 2006 S07 sequence.

Fig. 9. Another example from PETS’06 dataset. Frame 3300 presents occlusion in all camera views but the system could accurately find the right people location.

Table 1
Tracks found by the tracking procedure compared to ground truth people trajectories.

PETS 2006 S07

Number of trajectories 22
Found tracks 30
Trajectory recall 100.00%
Trajectory precision 96.67%
Tracks per trajectory 1.3182
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The largest deviation was about 50 cm and its associated to a run-
ning man in the video sequence (subject 14). Fig. 11 displays the
estimated and ground truth trajectory for subject 19. This subject
crosses the entire hall and is occluded by other people several
times.

3.3. Limitations

Although the good results, the proposed method presents limi-
tations. First, the method assumes the ground is a flat surface, what
could not be true in some challenging situations (a field or a



Fig. 11. Trajectory for subject 19. The subject was occluded several times along the trajectory. There are foreground misdetection at some points, caused by color similarity
between his clothes and the background. The baseline between cameras 1 and 3 is marked as a dashed gray line.
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meadow, for example). Moving cameras pose the hard issue of
homography estimation for each new view, what could be imprac-
ticable in some situations. Finally, a dense crowd could produce a
high number of false positives caused by the challenging occlu-
sions in all camera views, although the use of a greater number
of cameras presenting appropriated views of the environment
could yet produce useful results.

4. Conclusions

A novel method to locate people on the ground plane using
multiple camera views was presented. The main advantage of the
method is that it does not require initial people segmentation or
tracking. The robustness of the method is due to the accumulation
of support from all cameras. The support of a candidate object loca-
tion is defined as the amount of foreground pixels above that loca-
tion. Therefore, pixels that correspond to ground points have more
support. The support is normalized to compensate for perspective
effects and accumulated on the reference plane for all camera
views. The detection of people on the reference plane becomes a
search for regions of local maxima in the accumulator. The paper
also introduces a filtering algorithm that eliminates many false
positives by checking the consistency of the location against the
remaining objects for all camera views. The remaining candidates
are tracked using Kalman filters and appearance models. Challeng-
ing sequences from PETS 2006 were used to test the system and
show its robustness to severe occlusion situations using just 3
sparse cameras. Ground truth data also confirms the tracking accu-
racy of the method.

Future work includes further experimentation in crowded sce-
narios and trajectory analysis for event detection. Another topic
for future investigation is the comparison to state-of-the-art meth-
ods and benchmarking that should be made by the use of new pub-
lic data and annotation sets, as the PETS 2009 dataset.
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