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Abstract

This paper proposes a method to locate people on a ref-
erence plane using multiple cameras. Previous works rely
on people trajectories and color models to solve occlusion.
This new approach solves people detection under occlu-
sion by accumulating evidence from multiple views instan-
taneously and does not rely on previous segmentation of in-
dividuals in foreground data or any tracking information.

First, foreground data from one view, segmented using
background subtraction, is projected onto the ground plane
or reference image. The projected foreground of a second
view overlaps the first projected foreground only on the
points where the foreground intersects the ground plane.
Thus, by accumulating the evidence from multiple views,
people can be located by detecting local maxima on the ac-
cumulated reference image. Experimental results using pub-
licly available data from PETS’06 [9] show that the method
robustly locates people in very challenging situations with
occlusion in most of the views. The locations on the ground
plane can further be used for segmentation and tracking on
each camera view under severe occlusion.

1. Introduction

In recent years, the use of multiple cameras for people
segmentation and tracking have gained more attention. Mul-
tiple cameras are useful to recover 3D space information
from the scene and solve occlusion in crowded environ-
ments. One of the key aspects of multiple camera surveil-
lance is how to define the correspondence between objects
found in each camera view. To match people across mul-
tiple cameras, Hu et al. [5] represents each person by her
principal axis. Their system relies on the fact that the in-
tersection of the principal axis of a person in a view and
transformed principal axis of this person in another view
corresponds to the “ground-point” of this person in the first
view. The likelihood between two axes from different views

is computed comparing their intersection with a predicted
ground-point. To compute this point, the authors combine
single view foreground segmentation with Kalman Filter
based tracking. The likelihood is used to drive the axis cor-
respondence process. The system relies on individual seg-
mentation, so inter-objects occlusion can degrade the axis
location performance.

Kim and Davis [6] combined the principal-axes cross-
ing idea to a particle filtering framework for people track-
ing. First, a set of particles (ground points) is draw from fil-
ter dynamics. Then these points are integrated to appearance
models [7] of each individual to perform people segmenta-
tion in each camera view. Once foreground pixels are seg-
mented and classified (each person is a class), the principal-
axes are computed and, using correspondence derived from
classification, new ground points are estimated by axes in-
tersection, refining localization. The algorithm follows up-
dating the samples set, according to an observation equa-
tion. The drawback is that their system requires that individ-
uals appear initially as isolated foreground blobs to proper
modeling.

Chang and Gong [2] defined a Bayesian belief network
to match subjects between consecutive frames (tracking)
and between multiple camera views at the same time. This
system needs to perform segmentation of heads to define
the network probabilities. Thus occlusion is still an issue.

Previous methods for segmentation of groups of people
in individuals are affected by two main problems. First, par-
tial and total occlusion are common. In places such as air-
port halls or train stations, people frequently walk together
in small groups most of the time, causing occlusion in all
camera views. Second, when color models are used for seg-
mentation, people dressed with similar colors become an-
other source of problems [5].

The present method does not rely on single view seg-
mentation of the subjects, neither on tracking or color mod-
els. Multiple view perspective geometry is applied to col-
lect evidence of people presence on the ground plane. Mul-
tiple camera foreground information is then integrated, lo-
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Figure 1. Overview of the proposed system.

cating the people on the ground plane, solving occlusion
and defining people correspondence between camera views.
Thus people position and segmentation are obtained simul-
taneously on a reference image, where occlusion is natu-
rally resolved and many camera views can be easily inte-
grated.

The rest of this paper is organized as follows. The
method is described in Section 2. Some results obtained us-
ing the PETS’06 video sequences are shown in Sec-
tion 3. Finally, Section 4 presents some conclusions and
points for further work.

2. The method

Figure 1 gives an overview of the method. Each static
camera feeds a background subtraction module. A mixture
of Gaussians models the background color distribution for
each pixel. The segmented foreground is used to compute
evidence of people presence for each pixel on the refer-
ence image π (floor plane). A linear algorithm computes
the amount of “foreground mass” relying in each position
in the floor plane. Perspective is carefully considered to ac-
curately detect objects near and far away from the cam-
eras. Homographies transform each camera view to the ref-
erence plane, where multi-view evidence is integrated. Fi-
nally, ground points (people location on the ground plane)
are computed on regions that obey some size (height and
area) constraints.

2.1. Background subtraction

The color distribution for each background pixel in time
is modeled as a mixture of Gaussian distributions [8]. This
Gaussians mixture approach is able to deal with multiple
modes on the background color distribution probability.

A pixel x presents color f(x), represented in rgI space
(normalized red, normalized green and light intensity). Nor-
malized color is less sensitive (compared to RGB space) to
small changes in illumination caused by shadows [10].

A pixel’s distribution is modeled by K Gaussians. The
k-th Gaussian presents mean vector µk = 〈µrk, µ

g
k, µ

I
k〉, co-

variance matrix Σk and a weight wk, the probability this
pixel has subclass k. An expectation-maximization (EM)
algorithm combined to an agglomerative clustering strat-
egy [1] is applied to estimate K and the mixture parame-
ters for each pixel. Because the training set is not free of
moving objects, the background distribution is represented
by the Gaussians whose weight wk is greater than a thresh-
old Tw.

Each pixel xi is compared against all subclasses in the
background mixture model. The probability of xi be in the
k-th subclass is

pk(xi) =
1

(2π)3/2|Σk|1/2
e−

1
2 (f(xi)−µk)tΣ−1

k
(f(xi)−µk).

If there is a subclass k where pk(xi) ≥ 0.5, xi is classi-
fied as background.

Shadows are a common source of background misde-
tection. We use an additional test, based on Wang and
Suter [10] work, to perform some shadow removal. Let
f I(·) denotes the pixel’s intensity component in f . If xi
chromaticity fits r and g models and

Tshadow ≤
fI(xi)
µIk

≤ 1.0,

where Tshadow is a threshold, then xi will be classified as back-
ground. The idea is that a background pixel will present just
a fraction of its expected intensity value whitin shadow re-
gions.

2.2. Support computation

Let xq = (x, y) be a pixel on the image plane of camera
q and consider that xq is a ground point, i.e., a point on the
ground plane where an object is located. The support of xq

is given by the amount of foreground pixels standing above
it, off the ground plane.

Under perspective projection, vertical parallel lines in
space map onto a pencil of lines intersecting at a common
point in the image plane, the vanishing point vq [3, 4], as
shown in Figure 2 (a). The pixels on the line defined by
xq and vq correspond to the set of pixels that stand over xq .
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Figure 2. (a) Perspective transform for two cameras p and q with projection centers Cp and Cq and
vanishing points vp and vq. (b) Perspective correction and height filtering. The bright areas corre-
spond to foreground. Bars correspond to the height of the person standing on xqr.

The support is determined by the number of foreground pix-
els on this line.

Simple pixel counting to determine support is not accu-
rate due to perspective effects. Figure 2 (b) shows six bars of
different pixel lengths. All of them correspond to the same
height h of the person standing at xqr but at different lo-
cations xqi . Using hr as reference height and using some
affine points [3], it is possible to define, for each pixel xqi ,
the length in pixels that corresponds to hr, assuming that xqi
is a point on the ground plane. This length will be used as a
normalization factor for support.

In the image plane of camera q, consider xqr, the ground
point of a reference object with height hr. Let x̂qr be the pro-
jection of xqr on a parallel plane hr units far from the floor
plane, as shown in Figure 3. Let d denote the distance in
pixels between two points and assume we know d(xqr, x̂

q
r).

We are looking for the distance d(xqi , x̂
q
i ), where the refer-

ence object is placed on a different location xqi .
Criminisi et al. [3] applied the cross-ratio to find the re-

lation
hr
hq

= 1− d(x̂qr, c
q
r) d(xqr,v

q)
d(xqr, cqr) d(x̂qr,vq)

(1)

between the reference height hr and the camera height hq ,
the distance from the camera center to the floor plane. The
points cqr and cqi are the projections of xqr and xqi onto
ground plane vanishing line l (see Figure 3).

The same ratio can be found using

hr
hq

= 1− d(x̂qi , c
q
i ) d(xqi ,v

q)
d(xqi , c

q
i ) d(x̂qi ,vq)

. (2)

We are interested in the distance η(xqi ) = d(xqi , x̂
q
i ),

but x̂qi is unknown. Let α(xqi ) = d(xqi ,v
q) and β(xqi ) =

Image plane q
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Figure 3. Single view geometry: l is the
ground plane vanishing line and vq the ver-
tical vanishing point. It is possible to predict
the objects’s length in pixels when placed in
any position xqi in π [3, 4].

d(xqi , c
q
i ). The terms on x̂qi can be rewritten as

d(x̂qi ,v
q) = α(xqi )− η(xqi ) (3)

d(x̂qi , c
q
i ) = β(xqi )− η(xqi ). (4)

Let

γ =
d(x̂qr, c

q
r) d(xqr,v

q)
d(xqr, cqr) d(x̂qr,vq)

. (5)

Using the equality between Equations 1 and 2 we have, af-
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ter simple algebraic manipulation:

η(xqi ) =
α(xqi )β(xqi )(1− γ)
α(xqi )− β(xqi )γ

. (6)

The value of η(xqi ) can be pre-computed for each xqi and
used as a normalization factor in further support computa-
tion.

We will filter objects by their height. As the system is
looking for people, an appropriated range [hmin, hmax] is
adopted (picking the height of a reference individual, for
example). A person cannot present support below the mini-
mum height hmin or beyond a maximum hmax. Figure 2 (b)
illustrates the idea. Bright areas mark the foreground seg-
mented from image q. The bar directions are defined by
the ground points xqi and the vanishing point vq . The bar
lengths in pixels correspond to hmax. The support of xqi
is the amount of foreground pixels along its corresponding
bar. Observe that the point xq1 does not present any support
and that xq2 , xq3, xq4 and xq5 present similar support. This il-
lustrates another useful feature in adopting hmax: an arbi-
trary large height value would make xq2 present much more
support than the other points. That is not the case, the scene
does not contain very tall single objects but a line of 3 peo-
ple under occlusion. Many points will present high support
values because a single foreground image cannot present
accurate locations for objects under occlusion (xq3 is not an
object ground point, for example). In the next step, support
from multiple camera views are combined to compute peo-
ple locations.

The support Sq(x
q
i ) can be computed efficiently for all

pixels xqi in a line passing through vq (i.e., a line orthog-
onal to the ground plane π). Let s = 〈xq1, ...,xqn〉 be the
line segment obtained by constraining the line by the im-
age frame, as seen in Figure 4. Algorithm 1 computes the
support by counting the number of foreground pixels pro-
jecting onto xqi and using η to get the support value in ref-
erence units. The maximum support is constrained avoiding
an objects extending beyond hmax.

Suppose we are processing xq280 and found 240 fore-
ground pixels counted at this point (F [280] = 240 – see
Figure 4). Using η(xq280) and hmax, we verify that, if xq280

was a ground point, the tallest object would cover no more
than 120 pixels, reaching pixel xq160 at most (Line 9 of the
algorithm). Inspecting xq160, we found 140 foreground pix-
els observed at that point (F [160] = 140). So, there are 100
foreground pixels between xq160 and xq280. These foreground
pixels are the evidence about object presence at xq280. As η
is a function of xqi , j is different for each point, what justi-
fies the procedure in Lines 9–14.

Background classification error obviously influence the
correct computation of an object’s support. For example,
when people are dressed using color matching the back-
ground color distribution, parts of their bodies are misde-

tected. The foreground pixel counting used in Lines 4–8 ad-
dress this issue and does not constrain support computation
to perfect background classification.

Algorithm 1 Support algorithm. It computes the support
Sq(x

q
i ) for all points xqi in segment s.

1: procedure SUPPORT(s = 〈xq1, ...,xqn〉, hmin, hmax, η)
2: F [0]← 0
3: for i← 1, n do
4: if xqi is FOREGROUND then
5: F [i]← F [i− 1] + 1
6: else
7: F [i]← F [i− 1]
8: end if
9: j ← i− hmax · η[xqi ]

10: if j > 0 then
11: h← (F [i]− F [j])/η[xqi ]
12: else
13: h← F [i]/η[xqi ]
14: end if
15: if h ≥ hmin then
16: Sq(x

q
i )← h

17: else
18: Sq(x

q
i )← 0

19: end if
20: end for
21: return Sq
22: end procedure

Figure 5 shows support results for three different cam-
eras. The figure shows support peaks near people’s feet, as
expected. But in the first row, false foreground detection
caused by shadow produces high support values in regions
of the ground plane presenting no objects. Although shadow
misdetection can become an issue in single view process-
ing, multiple view integration is able to minimize this prob-
lem.

2.3. Multiple camera views integration

To discriminate each person location, the support from
other cameras have to be integrated. Only true ground points
will present high support in multiple camera views. For ex-
ample, in Figure 2 (b), a false ground point xk3 has high sup-
port but it is unlikely that the same occurs in another cam-
era. In fact, this will only happen when the point belongs to
the baseline of two cameras.

The homography matrix Hq maps ground points xqi in im-
age plane q to ground points xi on the ground plane π to:

xi = Hqx
q
i . (7)
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Figure 4. An example of iteration for Algo-
rithm 1 (i = 280). Line 9 make us to check
pixel x160 – unoccluded even for the tallest
object. There are 100 pixels between x160 and
x280. Refer to text for discussion.

Using a set of points on the image plane and a set of corre-
sponding points in π, Hq can be estimated by the direct lin-
ear transformation algorithm (DLT) [4].

Let Sq(x
q
i ) be the support computed on point xqi for cam-

era q. All support data from Q cameras can be integrated on
π by

A(xi) =
Q∑
q=1

Sq(H−1
q xi). (8)

where A is the accumulator image (Figure 6). Objects can
be located by finding regions on A presenting high support.

A threshold TS is used to select points xi ∈ π present-
ing the minimum accepted amount of support. To set this
threshold, we use the hmin and the number of cameras able
to cover the point.

A smoothed version of A is used for threshold-
ing. Smoothing will integrate the support information in
a neighborhood of xi. After thresholding, we get a set
of blobs, sets of connected points presenting high sup-
port. Morphological filters (closing and opening) are used
to remove small blobs. The kernel used has size w, forc-
ing objects to cover a minimum area on the plane for detec-
tion. To represent the object position as a single point, the
local maxima on the blob is selected.

3. Results

The system was tested using the S7 dataset from the
PETS 2006 Benchmark Data [9]. This dataset presents
video recorded at Victoria Station in London, UK. Video
from three cameras was used, showing that few cameras are
enough to produce good location results.

Foreground Support (camera plane)

(a) (b)

Figure 5. Support computation: the fore-
ground images (a) are input for the support
algorithm. The support (b) peaks near people
feet.

Manual calibration was used to compute the vanishing
points of each camera and the appropriate homography ma-
trix to the ground plane π. The height of a selected indi-
vidual was used to define the reference height unit. The al-
lowed height range was set to [0.7, 1.0] units (that is 70%
to 100% of the reference man’s height). The morphologi-
cal kernel used in the experiments has size w = 7, ensuring
that people are about 40 cm apart from each other.

Figures 7 and 8 shows the results for three situations
presenting occlusion cases. The first row displays the floor
plane schema and the detected objects positions. These
points are classified as people’s ground points and are
shown as white dots in the next row. Homographies are used
to map the ground points back to each camera view.

The subjects of interest are the people visible on the floor
plane diagram in the first row of Figure 7. Frame 3300 in
Figure 8 shows an example of occlusion under three views.
The proposed system is able to detect each individual suc-
cessfully.
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Support (floor plane π)
From Camera 1 From Camera 2

From Camera 3 Accumulated support A(xi)

Figure 6. Multi-view integration. Homographies are used to warp support from the original camera
view to the floor plane π. On true ground points, objects locations on π, the accumulated support
A(xi) peaks.

Frame 1721, Floor Plane

Camera 1 Camera 2 Camera 3

Figure 7. Local maxima corresponds to people’s location on the reference ground plane (marked
with white dots). The homographies Hq are used to map the people’s ground points back to each
camera view.
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Frame 2514, Floor Plane

Camera 1 Camera 2 Camera 3

Frame 3300, Floor Plane

Camera 1 Camera 2 Camera 3

Figure 8. Another two examples from PETS’06 dataset. Note frame 3300 presents occlusion in all
camera views but the system could accurately find the right people location.
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4. Conclusions

This work presented a new method to reliably locate peo-
ple on the ground plane using multiple camera views, solv-
ing hard occlusions cases. The method does not require ini-
tial people segmentation or tracking, relying only on multi
camera geometric properties. For each view, the evidence
of a person on a certain location is accumulated on the
ground plane using a homography. A reference height is
used to represent support in the same unit for all ground
pixels, making direct comparison and global thresholding
possible. Experimental results using challenging data from
PETS 2006 shows the robustness of the method. The sys-
tem is also robust to large background subtraction errors, al-
though severe global illumination changes and camouflage
against background can degenerate the results.

Further work will use the ground points as observations
in a tracking module, starting the targets positions, updat-
ing the movement models and computing individual trajec-
tories. The ground points will be also used to refine back-
ground subtraction and to help people segmentation in each
view.
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