
Real Time Novel View Scene Rendering From Multiple Sparse Videos

Jeferson Rodrigues da Silva, Thiago Teixeira Santos, Carlos Hitoshi Morimoto
Computer Science Department

Institute of Mathematics and Statistics - University of Sao Paulo
Sao Paulo, Brazil

Abstract—Free Viewpoint Video (FVV) might become one
of the most interesting features in future digital television,
enabling viewers to move around freely and observe the
scene in three dimensions (3D) from any desired viewpoint,
similar to many 3D interactive computer graphics applications
today. This paper describes a FVV appropriate for virtual
reality systems that allows the user to explore a 3D scene in
real time using a small set of sparse cameras. Our method
combines a simple geometric model of the scene composed of
planes with tracking information of moving targets to generate
novel perspective corrected 3D views of a virtual camera.
To achieve real-time rendering frame rates, view dependent
textured mapped billboards are used to render the moving
objects at their correct locations and foreground masks are
used to remove the moving objects from the projected video
streams. Our current real-time prototype is able to generate an
interactive 2D virtual camera view from 3 synchronized video
streams of resolution 768×576 with several moving objects at
about 12 fps.

Keywords-Free viewpoint video; real time image and video
synthesis using sparse cameras.

I. INTRODUCTION

Future digital television (DTV) features might include
3D-DTV (3 dimensional DTV) and FVV (Free Viewpoint
Video), which enables viewers to move around the scene,
similar to many 3D interactive computer graphics applica-
tions today. This feature allows the user to visualize events
in 3D with a lot more flexibility and control. FVV is
a particular interesting problem because its solution must
combine elements from computer graphics, computer vision,
image processing, and human computer interaction. The so-
lution is commonly achieved using Image Based Rendering
(IBR) techniques [1]. A recent special issue of the Signal
Processing Image Communication Journal [2] focused on
these and other issues about the future of 3D video and TV
applications such as representation, coding, transmission,
and so on.

IBR can be described as a process of sampling and render-
ing of the plenoptic function [3]. The plenoptic function l is
a 7D function that models the appearance of a 3D dynamic
environment and requires no geometric model. The function
represents the light rays at every space location (x, y, z),
towards every direction (α, β), over all wavelenghts (λ) and
at any time (t), so that it can be written as:

l(x, y, z, α, β, λ, t). (1)

Rendering is possible after appropriate samples are taken
from l. Samples can also be used for representation and
storage. For practical reasons, the 7D plenoptic function
l must be simplified. For example, wavelength may be
constrained to visible and quantized to RGB values, the
motion of the viewer may be restricted to a surface, or
the position of the viewer may be fixed, what reduces the
dimension of the plenoptic function. Time is also commonly
dropped for rendering static scenes.

Very realistic rendering is achieved by using a large
amount of samples or images. For example, 120 computer
controlled still cameras were used to capture the scene in
the movie Matrix, where Keanu Reeves dodges bullets, a
technology named “Flo-Mo” by the movie producers. In
order to reduce the number of cameras needed, it is possible
to increase the amount of knowledge about the scene, such
as scene geometry, as suggested by Debevec et al. [4].

The focus of this paper is the efficient rendering of
novel views from multiple sparse video streams to allow
the use of previously recorded real scenes in virtual reality
systems. We are particularly interested in generating novel
views of scenes recorded with multiple sparse cameras with
significant overlap, but far less than the minimum required
to apply “Flo-Mo”.

The two main contributions of this paper are the develop-
ment of a real time system for free viewpoint video rendering
from multiple sparse video streams, and the implementation
of an efficient algorithm to compensate camera illumination
and color differences.

A. Related Work

A survey of IBR techniques is presented in [1] by Zhang
and Chen. For purely IBR techniques, data acquisition
(sampling) is generally non-trivial due to calibration and
synchronization of a large number of cameras required (for
example, for techniques such as Light Field and Lumigraph).
Real-time performance for VBR remains a challenge for
reasons such as video capture and synchronization, data
storage, transmission(for live applications), and rendering.

For the purpose of this work, we select the rendering
of large scenes and people activity as the most important
features for FVV. Kang et al. [5] introduced plenoptic
primitives to enable virtual walkthroughs in large environ-
ments. A plenoptic primitive can be any type of local visual

XII Symposium on Virtual and Augmented Reality Natal, RN, Brazil - May 2010

184

experience, such as 360o static panoramas, panoramic video,
or concentric mosaics. By combining these primitives, the
user visual experience is enhanced.

Real time image-based rendering systems are reported in
[6]–[8]. They are all similar in the way that they all com-
pute depth or structure as a pre-processing step. Once the
structure information is available, novel views are generated
in real time. Such techniques do not deal with video streams
and their associated problems, such as moving objects.

Starck and Hilton [9] and Carranza et al. [10] address
the synthesis of novel views of people from multiple video
streams. Starck and Hilton [9] consider the target area of
a multiple camera capturing system (a 3D virtual studio)
with the requirement for free-viewpoint video synthesis for
a virtual camera with the same quality as the captured video.
View-dependent shape optimization combines multiple view
stereo and silhouette constraints to estimate correspondences
between images in the presence of visual ambiguities such
as uniform surface regions, self-occlusion, and camera cali-
bration error. Carranza et al. [10] extract silhouettes from
the synchronized video frames using background subtraction
that are used to compute the pose of a 3D human body
model.

Min et al. [11] presents a method to synthesize novel
virtual views in multi camera configurations for 3D TV
systems. Similar to the IBR technique described by Willems
et al. [6], they first compute disparity maps of neighboring
views. Occlusion is handled by using cost function to
appropriately weight the views.

For our purposes the methods described so far would not
produce good results due to the lack of camera control, low
image quality, low number of cameras and large distance
between cameras. To deal with sparse uncalibrated cameras,
we build a simplified scene model, that includes scene
geometry and texture mapping, similar to Debevec et al.
[4] who introduced an algorithm that combines IBR with an
approximate 3D scene model to efficiently render a realistic
fly-by video of the scene. Our algorithm, described in Sec-
tion II, extends this technique to handle video streams and
moving objects. The simple model creation is also described
and allows the system to handle occlusion artifacts. Another
large source of artifacts is due to the color differences
between images of different non color calibrated cameras.
We present a color calibration method that compensates for
color differences between cameras and between each camera
and the scene model. Experimental results are presented in
Section III, and Section IV concludes the paper.

II. NOVEL VIEW SCENE RENDERING

Our method for novel view scene rendering is composed
of a pre-processing stage and an interactive real-time ren-
dering stage as seen in Figure 1.

The pre-processing stage receives as input a set of syn-
chronized videos of the scene, the calibration data for each

(a) Objects as projections (b) Objects as billboards

Figure 2. Perspective error when the viewpoint of the virtual camera
differs from the viewpoint of the projected video

camera, and a textured 3D scene model. At first, all videos
and the calibration data are used as input for a segmentation
and tracking module. This module computes foreground
masks and tracking information for all frames of every video.
Then the videos and the scene model are used as input for a
color calibration module that calculates and stores a different
look-up table for each video. Such tables are applied to each
video to minimize the color differences between each video
and the scene model.

The rendering stage uses the same input as the pre-
processing step in addition to the outputs from the segmen-
tation and tracking module and from the color calibration
module to generate novel views of the scene in real time.
Basically the texture mapped 3D scene model is first ren-
dered from the viewpoint of the virtual camera controlled
by the user. Then the video with viewpoint closest to the
virtual camera viewpoint is projected onto the scene.

By projecting the video onto the scene model we are
able to show the moving objects over the static scene model
although these moving objects appear as if they were painted
over the scene model textures. This happens when the chosen
viewpoint differs from the viewpoints of the set of videos
as in Figure 2a. In order to render these moving objects
correctly for novel views, we use the data obtained from the
segmentation and tracking module to render view-dependent
texture mapped billboards representing each object. Using
the foreground mask information, the pixels corresponding
to the moving objects are marked as transparent, therefore
hiding these objects from the video projection. The holes
produced by this approach are automatically filled by the
scene model that is rendered before the video projection.
Texture swapping on virtual camera movement for video
projection and billboards is done smoothly because of view-
dependent texture mapping. Figure 2b shows an example of
the final rendering result.

In the following subsections we detail the pre-processing
and rendering stages.

XII Symposium on Virtual and Augmented Reality Natal, RN, Brazil - May 2010

185

Pre-processing stage

Segmentation
and tracking

Color calibration

Videos

Camera
calibration

data

3D Scene
Model

3D Scene
Model

Virtual camera
parameters

Videos

Novel scene
view

VideosMasks

Tracking
data

Look-up
tables

User

Rendering

Rendering stage

Figure 1. Method overview

A. Pre-processing stage

1) Model construction: A manually built 3D scene model
is used as input for the color calibration module and is also
used during the rendering stage. The simplified scene model
is composed of a set of planes with textures extracted from
the real scene. Those textures can be obtained from photos
of the scene by correcting radial and perspective distortions.
Figure 3 shows examples of scene models used in our
experiments, where the planar decomposition is noticeable.

Figure 3. Renderings of the parking lot and PETS’06 scene models.

2) Camera calibration: Assuming that the cameras in all
videos are static, they can be calibrated by the correspon-
dence of a set of points whose world and image coordinates
are known. In our system, the Tsai’s camera calibration
method [12] was used to estimate the internal and external
camera parameters from a set of manually extracted 3D
scene points and its corresponding 2D image points in each
camera view. Since this calibration method depends on the
accuracy of the coordinates of the given points, the position
and viewpoint of each camera was further refined manually
to provide a better alignment of the video projections to the
3D model.

3) Segmentation and Tracking: Moving objects are seg-
mented from the static scene background using a mixture of
Gaussians background subtraction algorithm [13]. Assuming
that the objects move along a flat surface, the location of
each moving object on the ground plane is computed using

a homography constraint over multiple cameras similar to
[14]–[16]. The major advantage of this method is that it is
robust to severe occlusion that occurs in crowded scenes.

After the blobs of the moving objects are segmented in
each camera, the location of each object is computed as
follows. Let Hi be the homography that maps the ground
plane to the camera view ci and vi be the ideal point in
the vertical direction for ci. Though there are many ways
of automatic computing Hi and vi [17], we use manually
selected image features to compute them.

Let xi be a foreground pixel of ci. If xi belongs to the
ground plane, it can be mapped back to the plane using
H−1

i . Because v is known, the number of the foreground
pixels above xi can also be computed. We call the number of
foreground pixels above xi the support of xi, or s(xi). The
basic idea is that foreground pixels with maximum support
correspond to points on the ground plane.

The ground plane Π is represented as a regular grid of
finite dimensions. For each camera ci the support s(xi) of all
foreground pixels is mapped to its corresponding grid ground
point using H−1

i . Figure 4 illustrates this process. Assuming
for simplicity that the moving object is a vertical line
segment, the line li seen from each camera ci corresponds
to a line segment l′i on the ground plane. Because the
line is perpendicular to the plane, each camera ci and its
corresponding homography Hi projects a different line on
the ground plane. From projective geometry it is well known
that the set of l′i will meet at the location of the line on the
ground plane.

The homography constraint works well when just a few
objects are present but not for crowded scenes due to the
large number of line crossings. Including s(xi) as weighting
coefficients, regions on the ground plane that correspond
to actual locations of targets are easily segmented as local
maxima, as shown in Figure 5.

The candidate objects segmented using the support in-
formation and the homography constraint are tracked using

XII Symposium on Virtual and Augmented Reality Natal, RN, Brazil - May 2010

186

Figure 5. The top row shows 3 synchronized views of a crowded scene. The support of each foreground pixel is overlaid over the 3 views. The middle
row shows the projection of the support information on the ground plane. The local maxima near line crossings are used to determine the location of
objects. These locations are displayed in the bottom row. The square pattern of the ground plane is reproduced in the middle and bottom rows.

Figure 4. Line l is perpendicular to the ground plane Π. The homographies
of Π to the image plane of the cameras CA and CB project l onto the
lines lA and lB respectively.

Kalman filters. A simple constant velocity motion model is
assumed for each object.

4) Color calibration: Due to differences in camera prop-
erties and settings such as sensors, lenses, exposure, white
balance etc., images from the same scene taken by different

cameras may present different colors and illumination. The
function of the color calibration module is to calculate look-
up tables that are to be applied to each video frame so
that the difference between the colors of the videos and
the scene model is minimized. This is required to reduce
color artifacts near transitions between camera views and
the model, seamlessly blending the videos with the scene
textures.

General histogram-based color calibration methods [18],
[19] consist on comparing the color histograms of image
regions assumed to have similar color distributions and
applying color transformation operations on the images in
order to minimize the differences in color distribution. Our
color calibration module uses as input the set of videos of the
scene in addition to a set of images of the rendered 3D scene
model matching the viewpoint of each video. We select the
camera with more natural color and brightness to use as
reference. Then, the RGB color histograms of corresponding

XII Symposium on Virtual and Augmented Reality Natal, RN, Brazil - May 2010

187

pairs of video and reference images are compared and
look-up tables that minimize the difference between their
color histograms are generated. A different look-up table is
calculated for each color channel mapping all 8-bit color
values in a channel to their corresponding calibrated 8-bit
color values.

We have developed a simulated annealing color calibra-
tion algorithm that finds monotonically increasing polyno-
mials used to generate the desired look-up tables. Such
polynomials are desirable to keep the basic shape of the
histograms by maintaining the relative order between color
intensities, therefore not changing the overall image color.
For cameras that present large color difference, one possible
solution is to minimize the difference between the color
histograms using only overlapping regions of the cameras.

Let I = (S,C) be an 8-bit grayscale image, where S is
a set of points representing the shape of the image I and C
a function that assigns a color intensity for each point in S.
Formally, S and C are defined by:

S = {(x, y) ∈ N2 : 0 ≤ x < width, 0 ≤ y < height}

C : N× N→ [0, 255]

The color v of an arbitrary p = (x, y) ∈ S is given by
C(p) = v.

A grayscale image histogram is a discrete function that
represents the distribution of all possible color intensities on
the image. Formally, the histogram h of image I = (S,C)
is given by:

hI(k) = |{p ∈ S : C(p) = k}|, for k ∈ N and 0 ≤ k ≤ 255

where |A| indicates the cardinality of A.
We define the normalized histogram of an image by

HI(k) =
hI(k)
|S|

We define the difference between two histograms h1 and
h2 by:

D(h1, h2) =
∑

0≤k≤255

(h1(k)− h2(k))2

Let Ia = (Sa, Ca) and Ib = (Sb, Cb) be two distinct
images from a same scene that share an overlapping region.
Let Ra and Rb be the overlapping regions that represent
a common plane between images Ia e Ib and let G be the
homography that takes a point pa ∈ Ra to the corresponding
point on pb ∈ Rb. We define the overlapping regions of
Ia and Ib by the sub-images Iab = (Sab, Ca) and Iba =
(Sba, Cb) where

Sab = {pa ∈ Ra : Gpa ∈ Sb}

Sba = {pb ∈ Rb : G−1pb ∈ Sa}

A look-up table can be defined as a function that assigns
a new intensity value for each gray level of a grayscale
image. Formally, a look-up table is defined by L : [0, 255]→
[0, 255]. Let l(x) = c0 + c1x + c2x

2 + · · · + cnx
n be a

polynomial of degree n then we can obtain a look-up table
from l by calculating L(x) = l(x) with x ∈ N and 0 ≤ x ≤
255.

By applying a look-up table L on an image I = (S,C)
we obtain a new image L(I) = L(S,C) = (S,L(C)).

Now we can define the color calibration problem as an
optimization problem where we need to find the polynomial
l that minimizes D(HL(Iab), HIba) or D(HL(Iba), HIab),
where L is the look-up table obtained from l.

To solve this problem, we used an algorithm based on
the probabilistic method of simulated annealing [20]. To
apply the simulated annealing method, we need to define
the problem in terms of states, energy and temperature.

We start by defining a state s by a set of n + 1 points
on a g × g grid defined over the [0, 255] × [0, 255] space
that will represent a polynomial of degree n that contains
all the n + 1 points in s. Formally, we define a state s by
s = (p0, p1, p2, . . . , pn) with pk = (xk, yk). The xk and
yk values must be restricted to the g × g grid and for that
reason xk = gu, yk = gv with g, u, v ∈ N, 0 ≤ xk ≤ 255
and 0 ≤ yk ≤ 255.

We also define some additional positioning restrictions for
the state points so as to avoid the generation of states rep-
resenting non monotonically increasing polynomials. Given
two points pi = (xi, yi) and pi+1 = (xi+1, yi+1) with
0 ≤ i < n and i ∈ N, they must satisfy the restrictions:
xi+1 > xi and yi+1 > yi.

Let s = (p0, p1, p2, . . . , pn) and t = (q0, q1, q2, . . . , qn)
be two arbitrary states. We say s and t are neighbours if
∃i | pi 6= qi, pk = qk ∀k 6= i and |xpi−xqi |+ |ypi−yqi | = g.
Figure 6 illustrates an arbitrary state and all of its neigh-
bours.

The energy Es of the state s = (p0, p1, . . . , pn) is
obtained by calculating D(HLs(Iab), HIba), where Ls is the
look-up table obtained from the state s. To build the look-
up table Ls, we need to obtain the polynomial l(x) =
anx

n +an−1x
n−1 + · · ·+a2x

2 +a1x+a0 represented by s.
This polynomial can be obtained by solving the following
system:

xn

0 xn−1
0 xn−2

0 . . . x0 1

xn
1 xn−1

1 xn−2
1 . . . x1 1

...
...

...
...

...
xn

n xn−1
n xn−2

n . . . xn 1

an

an−1

...
a0

 =

y0

y1
...
yn

Finally, the temperature T is defined by an initial tem-

perature T0, chosen accordingly to the problem, and it is
updated each K iterations of the algorithm by calculating
Ti+1 = αTi with 0 ≤ α < 1.

XII Symposium on Virtual and Augmented Reality Natal, RN, Brazil - May 2010

188

0 255

255

p
0

p
1

p
2

p
3

State s

l(x)

Figure 6. State and neighbours for the simulated annealing algorithm. The
state s = (p0, p1, p2, p3) represents a polynomial of degree 3 indicated
on the figure by l(x). Each neighbouring state of s is obtained by moving
one point pk to any of its neighbours indicated by the white filled circles
on the grid.

On Algorithm 1 we show the algorithm to calculate the
color calibration look-up table from image Ia to image Ib.

B. Rendering stage

The rendering step is responsible for the generation of
an interactive real-time visualization of novel views of the
scene.

The rendering process uses all previously calculated data
from the pre-processing step and some additional parameters
that can be controlled by the user: the camera position, the
viewing direction, and the video playing mode (such as play,
pause, rewind, and so on). These parameters are controlled
by the user in real-time via the user interface.

The process starts by using the stored look-up tables to ad-
just the colors of each video. This operation is very efficient
and is done as the current frame of each video is loaded by
changing each pixel RGB value for its corresponding look-
up table value.

The next 2 textures for each video frame are generated:
a foreground and a background texture. The foreground
texture is built using the calibrated RGB color channels
of the video frame and the foreground mask computed
from the Segmentation and Tracking Module is used as its
alpha channel. The background texture is also built using
the calibrated RGB color channels but uses the inverted
foreground mask as its alpha channel. The invertion is
required to remove the incorrect projection of the moving
objects from the background textures, i.e., making them
transparent in the background texture. Let Li be the look-
up table, Vi the RGBA image and αi the foreground mask
associated with camera i with 1 ≤ i ≤ n where n is the total
number of cameras. Then the foreground texture Fi and the
background texture Bi associated with camera i are defined

Algorithm 1 Algorithm to calculate color calibration look-
up table from image Ia to image Ib
Require: s0, T0, ε,K,HIab , HIba

Ensure: L
1. i← 0
2. s← s0
3. T ← T0

4. while T > ε do
5. if i = K then
6. T ← UPDATETEMPERATURE(T)
7. i← 0
8. end if
9. sn ← RANDOMNEIGHBOUR(s)

10. Ls ← CALCLOOKUPTABLE(s)
11. Lsn ← CALCLOOKUPTABLE(sn)
12. Es ← D(HLs(Iab), HIba)
13. Esn ← D(HLsn (Iab), HIba)
14. δE ← Esn − Es

15. if δE < 0 then
16. p← 1.0
17. else
18. p← e

−δE
T

19. end if
20. q ← GETPROBABILITY()
21. if q < p then
22. s← sn

23. end if
24. i← i+ 1
25. end while
26. L← CALCLOOKUPTABLE(s)
27. return L

as

Fi = αiLi(Vi) (2)

Bi = (1− αi)Li(Vi) (3)

After producing all textures for the current frame, the
3D scene model is rendered from the viewpoint chosen by
the user. We then determine which video has the viewing
direction closest to the chosen virtual camera by choosing
the camera whose angle formed by its viewing direction
and the virtual viewing direction is the smallest. Then the
video corresponding to the chosen camera is projected over
the scene model using the associated background texture.
Note that since the scene model is rendered prior to the
video projection and since the color difference between the
video and the model is minimized, the holes present on the
background texture due to the moving objects removal are
minimized.

In the final step, the moving foreground objects are
rendered as view-dependent texture mapped billboards over
the model. For each object present on the tracking data, a

XII Symposium on Virtual and Augmented Reality Natal, RN, Brazil - May 2010

189

billboard is rendered over the scene using the previously
obtained position information.

In order to generate the correct texture for each billboard
it is necessary to determine which cameras have the best
viewing angles relative to the billboard position. Viewing
directions are represented by a position on a sphere centered
at the billboard position. The sphere is decomposed in trian-
gles as seen in Figure 7. The set of vectors from the sphere
center to each triangle vertex represents the discrete set of
viewing directions that are considered for the billboard. The
number of relevant viewing directions can be reduced by
considering just the vertices of the triangle intersected by
the line segment defined by the virtual camera position and
the billboard position. Each vertex vi is associated to camera
cj as defined by

cvi = maxj < cj , vi >,∀j ∈ {1, . . . , n}, i ∈ {1, 2, 3} (4)

where cvi is the camera associated with vi, that corresponds
to the camera cj with viewing angle that maximizes the dot
product with vi.

Finally, we find the weight of each camera texture calcu-
lating the barycentric coordinates of the intersection point
of the triangle plane with the line segment from the virtual
camera to the billboard position. Let p be the virtual camera
position, b the billboard position, vi the position of the trian-
gle vertex i, and λi the weight of cvi . Then λ = [λ1, λ2, λ3]t

can be determined by the line-plane intersection equation

 tλ2

λ3

 =
[
p− b v2 − v1 v3 − v1

]−1 [
p− v1

]
(5)

λ1 = 1− λ2 − λ3 (6)

The bounding box of the moving object for each camera
is then used to determine which regions of the foreground
textures have to be used to compose the billboard texture.
Let Ri be the image region extracted from the foreground
texture Fcvi

. The final billboard texture O is defined as

O = λ1R1 + λ2R2 + λ3R3 (7)

III. EXPERIMENTAL RESULTS

For the purpose of testing the described method, an inter-
active system was implemented in C++ using the OpenGL
library for rendering and the OpenCV library for handling
the video sequences and performing image operations. The
relevant specifications of the test machine were: Intel Core 2
Duo 2.0GHz processor, 3GB of RAM and a NVidia 8600M
GT graphics board.

We performed tests using video sequences from two
distinct scenarios. The first video sequence was composed
of footage from a parking lot. This sequence was captured
using four cameras with distinct viewpoints and the resulting

videos had the resolution of 320×240 pixels. Images from
the viewpoint of each camera are shown in Figure 9. For
the second video sequence, we used the benchmark data-sets
available from the PETS 2006 Workshop [21]. This sequence
is composed of videos from four cameras with 768×576
pixels of resolution. For our tests, we discarded camera
number 2 because the region of interest was too small and
wouldn’t improve significantly the rendering results. Images
from this scene are shown in Figure 11. We also used
additional images from the PETS 2009 Workshop [22] to test
the color calibration algorithm since some of those images
present strong color and brightness differences.

For the parking lot video sequence, the system was capa-
ble of rendering novel views at the rate of 32.72 frames per
second. For the PETS 2006 video sequence, it was capable of
rendering novel views at the rate of 11.54 frames per second.
Both results were produced by caching all video frames in
memory before rendering. The difference in the frame rates
of the two sequences is mainly due to the difference in
video resolution. Since it is necessary to upload two new
32-bit textures per video every frame to the graphics board
memory, videos with higher resolutions require more texture
upload bandwidth in order to maintain high frame rates. By
uploading all needed video frame textures before rendering,
the system is capable of rendering both scenes at more than
50 frames per second.

Results for the color calibration algorithm can be seen
on Figure 8. We can observe that even in cases of severe
color and brightness differences, the algorithm is capable
of producing calibrated images with color and brightness
similar to the reference images.

A step-by-step image description of the rendering process
can be seen on Figure 10. Figure 10a shows the start of the
rendering process where the 3D scene model of the parking
lot is rendered from the viewpoint of the virtual camera.
Figure 10b shows the second rendering step where the video
with best matching viewpoint is projected over the model.
We can observe the sharp edges of the video projection and
the color differences between the projection and the model.
In Figure 10c, the edges of the projection borders were
smoothed and the moving objects were removed. The holes
left by the moving objects are clearly visible in the image. In
the next step, the color calibration transformation is applied
over the video frame and the result is seen on Figure 10d.
Then, the video projection and the holes are better blended
with the 3D model. In the final step, the moving objects
are rendered as billboards and the results can be seen on
Figure 10e and Figure 10f.

Rendering results for the PETS 2006 sequence can be seen
on Figure 12. In Figure 12a and 12b, we can observe render-
ing artifacts due to segmentation errors. Also, in Figure 12c,
there is another type of artifact that can be seen on the group
of people to the left. This artifact appears during texture
generation for the billboards when the bounding box of an

XII Symposium on Virtual and Augmented Reality Natal, RN, Brazil - May 2010

190

Virtual Camera
Billboard

We calculate the barycentric
coordinates of this point to find

the camera weights

b

p

T

c1

c3

c2

cv1
=1v1

cv2
=3v2

cv3
=2 v3

T

T

Figure 7. View-dependent Texture Mapped Billboard

(a) (b) (c)

(d) (e) (f)

Figure 8. Color calibration algorithm results using T0 = 256, K = 100, ε = 10−5. The left column shows the original images that need to be calibrated,
the right column shows the target reference image that contains the expected color and brightness for the correction and the middle column shows the
calibrated images.

object is occluded by the bounding box of another object.
The resulting billboard texture for those objects will share
the overlapping region of their bounding boxes resulting in
parts of those objects being replicated on the texture of both
billboards.

IV. CONCLUSION

We introduced a real-time free viewpoint video (FVV)
method that allows for the rendering of novel scene views
at interactive frame rates using sparse cameras. Scene
modelling and moving object segmentation and tracking

is performed offline. We use a multi camera homography
constrained object segmentation algorithm that is robust to
severe occlusion between objects. The 3D position of the
tracked objects are used to render them in 3D at their correct
location using view dependent texture mapped billboards.
Foreground masks from object segmentation are used to
remove artifacts caused by the moving objects from the
virtual video stream background.

To minimize color artifacts when combining multiple
sparse camera video streams, we have also developed a

XII Symposium on Virtual and Augmented Reality Natal, RN, Brazil - May 2010

191

Figure 9. Images from the parking lot scene

(a) 3D scene model (b) Video projection (c) Moving objects removal

(d) Color calibration (e) VDTM billboards (f) Novel view rendering

Figure 10. Steps of the parking lot scene rendering

simulated annealing color correction algorithm that finds
monotonicallly increasing polynomials that optimizes the
histogram transformation between cameras and the scene
model.

The final quality of the rendered views is similar to that of
the source videos and the system allows a user to navigate
the rendered 3D scene in time and space.

Future work includes the detection and handling of the
occlusions between billboards to remove phantom artifacts.
It is also possible to improve the rendering quality by using a
per pixel view-dependent texture mapping method instead of
using projective texture mapping to blend video and model.

REFERENCES

[1] C. Zhang and T. Chen, “A survey on image-based rendering –
representation, sampling, and compression,” Signal Process-
ing: Image Communication, vol. 19, no. 1, pp. 1–28, Jan 2004.

[2] M. R. Civanlar, J. Ostermann, H. M. Ozaktas, A. Smolic,
and J. Watson, “Special issue on three-dimensional video
and television,” Signal Processing: Image Communication,
vol. 22, no. 2, pp. 103–107, Feb 2007.

[3] E. Adelson and J. Bergen, “The plenoptic function and the
elements of early vision,” in Computational models of visual
processing, M. Landy and J. Movshon, Eds., The MIT Press,
1991, p. Chapter 1.

[4] P. E. Debevec, Y. Yu, and G. D. Borshukov., “Efficient view-
dependent image-based rendering with projective texture-
mapping,” in Proceedings of the Eurographics Rendering
Workshop, G. Drettakis and N. Max, Eds., Vienna, Austria,
June 1998, pp. 105–116.

[5] S. Kang, M. Wu, Y. Li, and H. Shum, “Large environment
rendering using plenoptic primitives,” IEEE Transactions on
circuits and systems for video technology, vol. 13, no. 11, pp.
1064–1073, Nov 2003.

[6] G. Willems, F. Verbiest, M. Vergauwen, and L. Gool, “Real
time image based rendering from uncalibrated images,” in
Proc. of the Fifth International Conference on 3D Digital
Imaging and Modeling - 3DIM’05, Ottawa, Canada, June
2005, pp. 221–228.

[7] K. Mueller, A. Smolic, P. Merkle, B. Kaspar, P. Eisert, and
T. Wiegand, “3d reconstruction of natural scenes with view-
adaptive multi-texture,” in In Proc. of 3DPVT, 2004, pp. 116–
123.

XII Symposium on Virtual and Augmented Reality Natal, RN, Brazil - May 2010

192

Figure 11. Images from the PETS 2006 scene

(a) Rendering 1 (b) Rendering 2 (c) Rendering 3

Figure 12. Novel view renderings from the PETS 2006 scene

[8] M. Sainz, R. Pjarola, and A. Susin, “Photorealistic image
based objects from uncalibrated images,” in Posters of the
IEEE Visualization Conference - VIS’03, 2003.

[9] J. Starck and A. Hilton, “Virtual view synthesis of people
from multiple view video sequences,” Graphical Models,
vol. 67, pp. 600–620, 5 2005.

[10] J. Carranza, C. Theobalt, M. A. Magnor, and H. P. Seidel,
“Free-viewpoint video of human actors,” ACM Trans. Graph.,
vol. 22, no. 3, pp. 569–577, 2003.

[11] D. Min, D. Kim, and K. Sohn, “Virtual view rendering system
for 3DTV,” in 3DTV Conference: The True Vision - Capture,
Transmission and Display of 3D Video, 2008, 2008, pp. 249–
252.

[12] R. Y. Tsai, “A efficient and accurate camera calibration
technique for 3d machine vision,” Proc. IEEE Conference
on Computer Vision and Pattern Recognition (CVPR 86), pp.
364–374, 1986. [Online]. Available: http://ci.nii.ac.jp/naid/
10012692972/en/

[13] H. Wang and D. Suter, “A re-evaluation of mixture of
gaussian background modeling,” in Proceedings of 30th IEEE
International Conference on Acoustics, Speech, and Signal
Processing (ICASSP 2005), vol. 2, 2005, pp. 1017–1020.

[14] W. Hu, M. Hu, X. Zhou, T. Tan, J. Lou, and S. Maybank,
“Principal axis-based correspondence between multiple
cameras for people tracking,” Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 28, no. 4, pp.
663–671, 2006. [Online]. Available: http://ieeexplore.ieee.
org/xpls/abs\ all.jsp?arnumber=1597123

[15] K. Kim and L. Davis, “Multi-camera tracking and segmenta-
tion of occluded people on ground plane using search-guided
particle filtering,” in Proceedings of 9th European Conference
on Computer Vision (ECCV’06), vol. 3953, Graz, Austria,
2006, pp. 98–109.

[16] T. T. Santos and C. H. Morimoto, “People detection under
occlusion in multiple camera views,” in Proceedings of the
XXI Brazilian Symposium on Computer Graphics and Image
Processing - SIBGRAPI ’08, Campo Grande, MS, 2008,
pp. 53–60. [Online]. Available: http://dx.doi.org/10.1109/
SIBGRAPI.2008.25

[17] A. Criminisi, I. D. Reid, and A. Zisserman, “Single
view metrology,” International Journal of Computer Vision,
vol. 40, no. 2, pp. 123–148, 2000.

[18] F. M. Porikli, “Inter-camera color calibration by correlation
model function,” in ICIP (2), 2003, pp. 133–136.

[19] M. Zhang, J. Xie, Y. Li, and D. Wu, “Color histogram correc-
tion for panoramic images,” Virtual Systems and MultiMedia,
International Conference on, vol. 0, p. 328, 2001.

[20] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization
by simulated annealing,” Science, vol. 220, pp. 671–680,
1983.

[21] P. 2006, “Pets 2006 benchmark data,” http://www.cvg.rdg.ac.
uk/PETS2006/data.html.

[22] P. 2009, “Pets 2009 benchmark data,” http://www.cvg.rdg.ac.
uk/PETS2009/a.html.

XII Symposium on Virtual and Augmented Reality Natal, RN, Brazil - May 2010

193

	Proceedings SVR 2010
	Cover Proc
	Proceedings SVR 2010
	Contra-Cover Proc

