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ABSTRACT
Most applications involving gaze-based interaction are supported
by estimation techniques that find a mapping between gaze data
and corresponding targets on a 2D surface. However, in Virtual and
Augmented Reality (AR) environments, interaction occurs mostly
in a volumetric space, which poses a challenge to such techniques.
Accurate point-of-regard (PoR) estimation, in particular, is of great
importance to AR applications, since most known setups are prone
to parallax error and target ambiguity. In this work, we expose the
limitations of widely used techniques for PoR estimation in 3D and
propose a new calibration procedure using an uncalibrated head-
mounted binocular eye tracker coupled with an RGB-D camera
to track 3D gaze within the scene volume. We conducted a study
to evaluate our setup with real-world data using a geometric and
an appearance-based method. Our results show that accurate esti-
mation in this setting still is a challenge, though some gaze-based
interaction techniques in 3D should be possible.
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1 INTRODUCTION
Gaze-based interfaces are part of an established way in itself of
human-computer interaction. They have been employed in specific

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
COGAIN ’18, June 14–17, 2018, Warsaw, Poland
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5790-6/18/06. . . $15.00
https://doi.org/10.1145/3206343.3206351

Figure 1: When a set of objects (A, B, C) are relatively
collinear with the visual axis of one of the eyes (R), the other
one (L) is necessary to determine gaze depth.

scenarios where traditional mechanisms of manual input are not
possible due to user or context constraints. More recently, with the
growth of virtual (VR) and augmented reality (AR) applications,
gaze-based techniques have been considered as a means to refine
and improve 3D interaction in such domains.

Head-mounted eye trackers are designed to be wearable, which
means that a calibration procedure between the eyes and a front-
facing camera is required in order to accurately estimate the user’s
gaze. This procedure generally involves a mapping between gaze
data and targets on a planar surface, with the input either being
image features (such as the pupil projected position) or a 3D model
of the eye, which is used to determine the optical axis [Hansen
and Ji 2010]. However, since interaction in VR and AR domains
occurs in a 3D volume, traditional estimation approaches might be
limiting in the sense that they cannot accurately predict the user’s
point-of-regard (PoR) in 3D without taking vergence into account.

This issue is particularly evident when there is a partial occlusion
or collinearity of 3D objects in the user’s line of sight, as shown in
Figure 1. Most known approaches in this case rely on determining
the fixation target by computing the intersection of gaze direction
with scene objects. This inevitably leads to a biased outcome, as the
nearest objects in the line of sight will tend to be hit more often, as
shown in Figure 2. One way of overcoming this issue is through
“parallax tricks”, such as requiring the user to fixate at the desired
object from different perspectives.

However, we argue that establishing a way to perform gaze es-
timation in the whole scene frustum would be a more interesting
course of action, as it would allow for gaze-contingent volumetric
interfaces, which could increase the level of control and visualiza-
tion of current 3D interfaces.

Although gaze estimation in scene volumes has barely been ex-
plored in the literature, there have been some attempts to solve
this problem imposing several constraints. In the case of remote
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Figure 2: Ray-object intersection tends to create a bias in fa-
vor of closer objects (A), instead of farther or actual objects
(C) being gazed by the user.

gaze tracking, this is a more straight-forward task, since both eye-
balls can be determined on camera space, as well as the κθ and κϕ
associated with the angular difference between optical and visual
axes [Guestrin and Eizenman 2006; Hennessey and Lawrence 2009].
In the case of head-mounted eye trackers, the works that explored
this problem presented either an already calibrated hardware [Lide-
gaard et al. 2014] or a very constrained calibration procedure [Ab-
bott and Faisal 2012]. Ultimately, none of these techniques were
applied to the camera scene volume.

In this work we are concerned with gaze estimation for uncali-
brated binocular head-mounted eye trackers in the scene volume
with very few constraints. Therefore, in our calibration procedure,
we do not require the user to be completely still, neither we have
information about coordinate system of eye cameras and the po-
sition of both eyeballs. Using an RGB-D camera attached to the
user’s head that generates a point cloud of the scene environment,
we conducted a pilot study with 11 participants to investigate the
feasibility of a calibration procedure for the camera frustum in such
conditions. We will refer to scene volume or camera frustum instead
of 3D estimation to stress the difference between our approach and
2D surface calibration procedures applied to 3D environments.

To the best of our knowledge, this is the first work that attempted
to perform this kind of gaze estimation for the purpose of establish-
ing PoR in scene volume using a head-mounted eye tracker. During
this process, we investigated and further developed two different
estimation techniques for this problem: one geometric and another
appearance-based. Following we list our major contributions:

• a calibration procedure for the scene volume;
• a dataset for gaze estimation in the scene volume;
• new estimation techniques for this setting.

Additionally, we also explore other minor problems, such as es-
timating the eyeball position through angular disparities between
different camera coordinate systems, and we provide a thorough dis-
cussion about the advantages and shortcomings of each technique
in this scenario.

2 PREVIOUS WORKS
One of the first works to explore the use of gaze in 3D environments
was provided by [Tanriverdi and Jacob 2000]. Others followed,
with the increasing number of applications related to virtual and
augmented reality.

There are numerous known techniques for PoR estimation in
2D surfaces [Hansen and Ji 2010], but only a few aiming 3D envi-
ronments. Yet, many of these latter techniques are limited to gaze
direction, with no accurate report depth information. Datasets for

this purpose are also lacking, since there has been only one work
that considered scene depth knowledge, but from the perspective
of a remote eye tracker [Mora and Odobez 2014].

Mardanbegi and Hansen developed a method that enables the
user to interact with planar displays in a 3D environment using a
head-mounted eye tracker [Mardanbegi and Hansen 2011]. This
method partially resorts to known calibration methods, but it also
assumes there is a homographic mapping between the screen on
the scene camera image to the actual screen coordinates due to
planarity constraints. A further development, using image features
and less restrictions, was presented by [Lander et al. 2015].

The earliest systems known capable of estimating 3D PoR re-
quired a fixed head-to-camera displacement. Kwon et al. introduced
a novel binocular technique for this purpose, computing first gaze
direction using corneal reflections and then gaze depth by inter-
pupillary distance [Kwon et al. 2006].

Works using wearable head-mounted systems usually resorted
to triangulation of known features in an egocentric camera image.
Mitsugami et al., for example, utilized view lines at multiple head
positions to estimate 3D gaze [Mitsugami et al. 2003], whereas
others designed a non-real time procedure to determine 2D PoR
in some video frames, later integrating them to reconstruct the 3D
PoR for posterior analysis [Munn and Pelz 2008; Pfeiffer and Renner
2014; Takemura et al. 2010].

[Abbott and Faisal 2012] proposed a low-cost wearable eye
tracker that was capable of gaze estimation in 3D space also using a
model-based approach, but their calibration setup did not account
for the parallax error and required previous knowledge about the
position of both eyeballs in the scene during the procedure.

Essig et al. presented a feature-based approach that relied only on
estimates generated by a neural network [Essig et al. 2006]. Measur-
ing binocular gaze angles, their reported results showed significant
improvement in comparison to a geometrical solution, specially
regarding depth, but in a very controlled environment. More re-
cently, [Itoh and Klinker 2014] developed a technique to estimate
gaze for HMDs using the Świrski and Dodgson algorithm [Swirski
and Dodgson 2013], which computes the optical axis by assuming
the eyeballs as perfect spheres. Others focused on the nature of
gaze depth and its estimation [Duchowski et al. 2014, 2011; Lee
et al. 2017]. A general theory for 3D PoR estimation was provided
by [Pirri et al. 2011].

Still, despite computing the 3D PoR, all these approaches gener-
ally perform calibration to 2D planes, which, in the case of head-
mounted eye trackers, gives room to the parallax error, created
when the eye and the scene cameras are not coaxial [Mardanbegi
and Hansen 2012]. A notable exception, perhaps, is the work of
[Hennessey and Lawrence 2009], as they proposed a way to com-
pute the 3D PoR directly to a real-world 3D volume in real time
— albeit using a remote tracking system. This was accomplished
by estimating the shortest distance between the two visual axis
vectors, a strategy that was later used by [Abbott and Faisal 2012].

Though the use of RGB-D cameras as a replacement for egocen-
tric scene cameras may represent a solution to the current poor
estimation of gaze depth and the parallax error, there are only a few
approaches that have exploited this solution. Some works proposed
to use RGB-D cameras for gaze estimation, but only to track the
eyes [Li and Li 2014; Mora and Odobez 2014; Xiong et al. 2014].
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Figure 3: Since two estimated vectors in 3D space coming
from the right (nR ) and left (nL) eyes will most likely not in-
tersect, the midpoint of the shortest segment between gaze
rays (in red) is a common measure of gaze estimation for
geometric-based models.

Figure 4: The angular error (green ellipse) of gaze estimation
barely affects the correct positioning on the facing plane (P ),
but it impacts greatly in terms of depth error, as it can be
seen by the largest axis of the diamond-shaped area.

[McMurrough et al. 2012] and [Paletta et al. 2013] have both
used a head-mounted setup with an RGB-D egocentric camera,
but they limited themselves to perform only a 2D calibration step
for posterior analysis of gaze data overlaid in depth images, thus
incurring on ambiguities associated with the lack of calibration to
the scene volume.

3 GAZE ESTIMATION MODELS
Gaze estimation techniques can be classified either as geometric-
based or appearance-based [Hansen and Ji 2010]. In general, geo-
metric models are known to be robust to eye tracker slippage and
are also able to compensate the parallax error, making them a suit-
able choice for head-mounted eye trackers. Also, since geometric
models provide gaze vectors through a rigid transformation of the
eyeballs, they require in theory just one screen target to perform a
user calibration, though in practice more points are necessary to
improve accuracy. In fact, geometric models are known to perform
worse than appearance-based ones due to several simplifications,
such as assuming that the eyeball is a perfect sphere.

Appearance-based models, on the other hand, rely on tracking
specific features on the eye image, such as the projected pupil
center. Since the eyeball rotation occurs in 3D space and the features
are captured through their projection, displacement of attributes
such as the pupil centers will not be linear on the image plane.
Thus, a nonlinear regression function capable of mapping tracked
features to targets on the scene camera must be found, which can
be done through several techniques, such as polynomial fitting,

Figure 5: The Pupil binocular eye tracker coupled with an
Intel Realsense R200 camera used as head-mounted setup.

support vector regression, Gaussian processes, and artificial neural
networks. Generally, this procedure tends to yield more accurate
results than a purely geometric model, as the regressor learns more
intrinsic information about the input data, including noise and
sensing biases. In practice, thismeans that a large and representative
set of points should be chosen from the target surface to achieve a
good calibration.

In 3D, geometric models are a natural choice for gaze estima-
tion, as one can assume that fixation in space occurs when there
is an intersection between both vectors aligned with the visual
axis. Because the two estimated vectors will most likely not in-
tersect in 3D, a reasonable substitute for the required intersection
could be the midpoint of the shortest segment separating these two
lines [Hennessey and Lawrence 2009], as shown in Figure 3. Still,
absence of high-resolution cameras and simplifications in the 3D
model of the eyeball may account for errors that compromise in
a significant way gaze depth estimation, as shown in Figure 4. In
this study we investigate how well a simplified geometric model
can be calibrated to the scene camera frustum in contrast with an
appearance-based approach, given a set o targets in space covering
the user’s field-of-view (FoV).

4 METHODOLOGY
4.1 Architecture description
A binocular head-mounted eye tracker from Pupil Labs was used
to collect gaze data at 30 Hz with a resolution of 480p. The Intel
Realsense R200 RGB-D camera was adapted to the tracker frame
as the scene camera. The R200 device was configured to run at 60
Hz and capture one RGB image and one depth image from scene at
each frame at 480p. All these devices were connected to a laptop PC
in order process and record the streams. The head-mounted setup
is shown in Figure 5.

The software used to compute eye features, such as the pro-
jected pupil centers and 3D gaze vectors, was a modified version
of the one provided by Pupil Labs (v0913) that also allowed us to
record eye streams. We developed our own software, using OpenCV
and librealsense libraries, to detect markers in the frustum, identify
them, and report information about their position in 3D space. The
technique used for marker detection resorted to a similar approach
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Figure 6: Disposition of training (green) and testing (pink)
targets per plane during calibration procedure.

proposed by [Fiala 2005]. Once detected, the coordinates at the cen-
ter of the marker were projected to 3D using a mapping procedure
between the RGB and depth frames. A mean filter was applied over
a window of 5 frames to smooth depth noise.

A portable smart projector was attached to a tall tripod in order
to show the markers on a wall during the calibration procedure.
A core routine was written to administer data acquisition from
the eye tracker and scene camera and dispatch commands to a
program running on the projector that controlled information being
displayed on the wall, such as the marker to be fixated.

4.2 Calibration procedure
We designed our calibration procedure to be conservative about the
number of targets that should be employed in the process, as there
was no previous information about how the camera frustum should
be spatially sampled. Therefore, we decided to use five planes at
different depths from the user. Each plane had a grid of 5× 4 binary
AR markers for training purposes and a 4 × 3 internal grid used
for testing. The relative position of the grids is shown in Figure 6.
The size of the planes and their markers also changed in respect
to depth in order to fill up the scene camera FoV, maintaining the
same angular ratio between them.

The planes were defined by positioning the user at 5 different
depths from a projection wall: 0.75 m, 1.25 m, 1.75 m, 2.25 m, and
2.75 m. These distances were considered taking into account some
limitations associated with the R200 camera, as its sensing range
varies from 0.51 m to 4 m, according to the manufacturer, but our
empirical evaluation revealed that the camera was only able to
provide reliable data between 0.7 m and 3 m.

The procedure starts by placing the user at 2.75 m from the
wall and adjusting the projection center so it can be aligned with
the camera scene FoV center. After that, we show all the training
markers on the wall and the user is asked to follow a green target
that remains static on the center of each marker at a time, while
the system gathers 30 synchronized samples from each different
camera feed. Samples are only recorded if eye features and markers
are properly recognized by detection algorithms. During this stage,
participants get a chance to practice and are instructed to move
their eyes to the correct target prior to triggering recording.

Figure 7: Projection of the targets used in calibration in re-
spect to depth, from 2.75 m to 0.75 m (Figs. a-e). Figure f il-
lustrates the 5 different user positionings in this setup.

Once acquisition of training targets for a plane is complete, the
user is asked to remain still and repeat the same procedure now
for the testing targets, which are shown in a similar fashion. Fol-
lowing that, we move to a next depth plane by placing the user
closer to the projection wall and we repeat the previous routine of
centering the screen and showing the markers for data acquisition.
An opportunity to redo part of the procedure is offered whenever
the individual notices a mistake. Figure 8 shows a diagram that
summarizes the whole method, while Figure 7 depicts it.

4.3 Estimation approaches
One of the goals of this study was to assess the performance of
geometric and appearance-based calibration methods for the cam-
era frustum. Following, we describe the estimation techniques that
were employed in this work and we detail the modifications that
were adopted to address some of the peculiarities of estimation in
the scene volume.

4.3.1 Geometric model. Our geometric model is constituted by
two normal vectors to the pupil centers provided by the Pupil track-
ing software. These vectors are a result of a 3D eyeball model that is
built from multiple observations of projected pupil contours, which
are approximated to ellipses. Assuming a camera pinhole model
and a weak perspective projection, the centers of these ellipses are
considered to be part of a sphere surface, which is regarded as a
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Figure 8: Architecture of the calibration procedure. A Data Manager routine controls the experiment, requesting the projector
to show training or testing targets and recording synchronized data from scene and eye cameras. Recorded data is used later for
gaze estimation algorithms. While GPR goal is to determine a function f , the geometric procedure needs to find the position
of eyeballs (eL and eR ) and associated rotation matrices (RL and RR ).

rough approximation of the eyeball. A detailed explanation of this
method can be found in [Swirski and Dodgson 2013].

To estimate the viewer’s gaze depth, it is assumed that is nec-
essary to find the convergence point of both gaze rays. However,
this can only be achieved by determining the origin of the rays,
i.e., the position of both eyeballs. This is not a particular challenge
for remote eye trackers or even for some calibrated head-mounted
devices, but it is still a challenge with an uncalibrated setup.

With no constraints and prior knowledge about the user anatomy,
finding the eyeball position in the scene camera space can be treated
as an optimization problem. [Mansouryar et al. 2016] proposed a
technique that minimizes the angular disparity between computed
gaze vectors on eye camera space and targets on scene camera
space. However, this approach is computationally expensive, as the
search involves determining 6 parameters simultaneously (3 Euler
angles and the coordinates for the eyeball position). Additionally,
dependency between parametersmight not always yield the optimal
outcome, as this is a typical non-convex problem, with many local
minima.

To reduce the complexity of the search space, we propose an ap-
proach that breaks the optimization procedure into two steps: first
we compute the eyeball position and then we determine the rotation
that places its gaze vectors into the scene camera space. This com-
putation assumes that angular disparity patterns are roughly pre-
served among gaze vectors between eye and scene camera spaces.
Therefore, given a set of angles between gaze vectors in the eye
camera space and a set of targets sampled in the scene camera frus-
tum, the eyeball position is determined by minimizing the squared
disparities between associated angles in both coordinate systems,
as shown in Equation 1.

F (e) =
N−1∑
i=1

���(ni · ni+1) − ( ti − e

| |ti − e | |
·

ti+1 − e

| |ti+1 − e | |

)��� (1)

The idea here is to minimize a function F , where e stands for
the eyeball position, ti stands for gaze targets and ni for the cor-
responding gaze vectors. A reasonable initial parameter for e is

(0, 0, 0). Although this procedure is also non-convex, the search
space is comparatively reduced. Also, as the number of dispari-
ties involved in the search increases, local minima also decreases,
making convergence faster and closer to ground truth.

Once a reasonable estimate is determined for both eyeballs, we
proceed to compute the rotation that transforms the gaze vector
in eye camera space to the appropriate orientation and position in
the scene camera coordinate system. This is summarized by the
parametric equation (2), where λ is a free parameter. Again, this is
an optimization problem where we want to compute the rotation
matrix (R) and the translation (T ) that minimize the cosine distance
between transformed gaze vectorsni and corresponding normalized
vectors with origin in e and pointing toward the target ti . This can
be expressed by (3). During non-linear minimization iterations, the
parameter β can be used to penalize larger dissimilarities, speeding
up convergence, if achievable.

ecam +T + λRn (2)

f (R) =
N∑
i=1

(
1 − Rni ·

ti − e

| |ti − e | |

)β
(3)

Finally, the PoR in 3D is computed as the midpoint of the shortest
segment between both rotated gaze rays nl and nr , with respective
origins in el and er . Assuming that this segment r is perpendicular
to both rays and given the parametric equations of each ray, we
solve for λl and λr in order to determine the midpointm of this
shortest segment, as shown in Equations 4, 5 6, and 7. A diagram
illustrating the geometric estimation pipeline is shown in Figure 9.

r = el − er (4)

λl =
(nl · nr )(nr · r ) − (nl · r )(nr · nr )

(nl · nl )(nr · nr ) − (nl · nr )(nl · nr )
(5)

λr =
(nl · nl )(nr · r ) − (nl · r )(nl · nr )

(nl · nl )(nr · nr ) − (nl · nr )(nl · nr )
(6)

m =
(el + λlnl + λrnr + er )

2
(7)
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Figure 9: Pipeline of the geometric method.

Figure 10: Pipeline of the Gaussian processes regressor method.

4.3.2 Regression-basedmodel. Despite themyriad of appearance-
based models that have been proposed in the literature, we opted for
a Gaussian processes regression (GPR) due to its wide applicability
and reportedly good results with similar problems [Sesma-Sanchez
et al. 2016; Sugano et al. 2013].

A Gaussian process is a stochastic process that assumes that
every finite set of its random variables has a linear combination
with a normal distribution. This strong assumption makes them sur-
prisingly flexible as a tool to model different sets of problems [Ras-
mussen andWilliams 2006]. In a way, they remind of Support Vector
Machines, in the sense that they are kernel machines. Thus, Gauss-
ian processes are primarily governed by their covariance function,
as it encodes the similarity between data input and targets.

For the purpose of finding a regression between gaze data and
scene targets, we selected a Squared Exponential Kernel, which
is shown in Equation 8, with initial parameters σ = 1.5 and scale
factor l = 1.0, as this configuration has demonstrated better gener-
alization properties during our preliminary trials.

K(x ,x ′) = σ 2 exp
(
−
(x − x ′)2

2l2
)

(8)

As with the geometric approach, the most difficult feature to
learn is arguably eye vergence. Some authors have proposed to
model this movement as a logarithmic function of the interpupillary
distance (IPD) [Kwon et al. 2006]. Although there is some truth
to that, in practice IPD is only markedly noticeable on camera
when the targeted object is very close to the user. After 1.0 m, this
measurement starts to be seriously affected by lack of resolution and
noise in the sensor, as changes in IPD become slight. Furthermore,
IPD might not be constant in regard to depth, specially for fixation
points situated obliquely to the viewer’s center of view. Moreover,
IPD cannot be used with an uncalibrated hardware, one that both
eye cameras do not share the same coordinate system.

Considering these limitations, we approached the problem of
depth regression separately, i.e., building a Gaussian processes
regressor for gaze depth and another one for gaze direction in
the projected scene camera plane. Sequential observations of z-
values were used as a filtering step to improve prediction. Results
of both regressors were combined later to perform gaze estimation.
A diagram illustrating the process is shown in Figure 10.

5 DATASET DESCRIPTION
We collected gaze data from 11 subjects (5 women) with ages rang-
ing between 22 to 35 years. All of them had normal or corrected-to-
normal vision during the procedure, which followed the protocol
fully described in section 4.2. The dataset comprehend information
about both left and right normalized pupil centers in each image
(LE2D, RE2D), as well as both normalized gaze vectors acquired
through 3D eyeball modeling (LE3D, RE3D), and the ground truth
targets in 3D coordinates provided by the RGB-D camera (RS3D).
During this process, we also acquired grayscale frames from both
eyes and scene cameras for debugging purposes, although this in-
formation was not integrated into the dataset due to size limitations.
Therefore, a valid sample was defined as:

S = {RS3D,LE2D,RE2D,LE3D,RE3D}

The number of samples was fixated on 30 by target, which
accounts for roughly 1 second of observation with our current
architecture. This value was chosen considering subject’s likely
extenuation due to a large amount of targets in the experiment.
Additionally, in order to minimize individual errors and increase
comfort during data acquisition, each participant received a device
to activate the moment of recording at each target being gazed.
Table 1 summarizes information about the number of samples for
training and testing targets. The dataset is publicly available at:
https : //дithub .com/elmadjian2/3D_дaze_dataset .
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Figure 11: Top-down visualization of the gaze estimation from a participant using the geometric approach (left) and the
regression-based one (right). Green points indicate the ground truth, while red dots are the corresponding estimates.

Table 1: Summary of the number of training and testing tar-
gets collected per user.

Samples Training Testing
Per Target 30 30
Per Plane 600 360
Total 3000 1800

6 EVALUATION AND RESULTS
Evaluation of the estimation algorithms was done using the pro-
posed dataset. The precomputed gaze vectors from each eye were
used separately as data input for the geometric model, while a
four-dimensional vector containing the data from left and right
projected pupils was assembled as input for the Gaussian processes
regressor — a necessary step, as depth can only be inferred through
simultaneous information from both eyes.

In total, five planes were used for training of both methods, while
two intermediate planes for testing were discarded, keeping only
the closest (0.75 m), the farthest (2.75 m) and the middle one (1.75
m). The reason for that was to assess whether intermediate planes
would increase or harm depth estimates, considering the results
that have been reported in another study by [Lee et al. 2017].

We evaluated accuracy in terms of depth error, angular error
and Euclidean distance to ground truth. Figure 12 summarizes the
basic statistical results in respect to each metric by plane using all
the 5 planes for prediction. These results are compiled in Table 2.
Figure 13 portrays the impact of the number of training planes for
gaze estimation. Since there was no significant difference on using
3 to 5 planes for training, we report only the analysis of variance
(ANOVA) results for the latter.

Regarding the depth estimate metric, a two-way repeated mea-
sures ANOVA showed that there was a main effect on method
(F (1, 10) = 50.74,p < 0.001), indicating that the regression ap-
proach was more accurate than the geometric one on this matter.
However, there was no noticeable effect on plane, or interaction
between method and plane.

Table 2: Summary of the results for the three metrics using
5 planes for calibration.

Metric Geometric GPR
Depth error (m) 0.538 ± 0.171 0.194 ± 0.118
Angular error (deg) 5.105 ± 2.594 4.911 ± 2.878
Euclidean distance (m) 0.585 ± 0.173 0.266 ± 0.103

Regarding angular error, despite the regression-based technique
being apparently more accurate, no significant effect was observed
either onmethod, given high standard deviation values. An effect on
plane (F (2, 20) = 4.04,p < 0.05) was observed though, suggesting
that angular accuracy is not constant among distinct planes.

For the Euclidean distance metric, a significant effect was ob-
served again on method (F (1, 10) = 65.31,p < 0.001), supporting
again the Gaussian processes regressor as a more accurate estimator.
No significant effect was perceived on plane, or between method
and plane.

7 DISCUSSION
Our results show that gaze estimation within a scene frustum is
still an open challenge, specially in terms of depth. A remarkable
observation is that the number of calibration planes seems to have a
noticeable impact on estimation. Therefore, even through a geomet-
ric approach, a single-plane calibration does not suffice to provide
useful gaze estimation in the scene volume.

It was also noted that the closer plane (0.75 m) showed higher
angular errors, particularly with the appearance-based method.
This might contradict the expectation that the farther plane (2.75
m) should yield worse results. Yet, one possible explanation for this
outcome could be the effect of vergence angular disparity on planes,
which is only strong in the first one (0.75 m).

Overall, it was possible to observe that by adding the depth di-
mension to the calibration problem, XY-plane estimates also tend to
degenerate for both approaches, which was expected at some level,
as depth sensing provided by the R200 camera had a considerable
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Figure 12: Average angular error, Euclidean distance, and depth error for each testing plane separately.

Figure 13: Average angular error, Euclidean distance, and depth error in respect to the number of planes used for calibration.

amount of noise. However, a larger number of participants should
be considered in future studies in order to confirm or generalize all
these findings.

A point that needs to be cleared is how contributive is the adap-
tive response of the ocular-motor system to input data quality. In
other words, further investigation is necessary to find out whether
the speed or stability of human focusing response is affecting es-
timation, so that more samples should be acquired per target in
order to assess appropriate gaze depth.

That said, both methods considered for this study presented
different strengths and weaknesses. The geometric model showed
a tendency of preserving the spatial relationship between testing
targets, although inaccurate estimations of the rotation matrix and
the eyeball position clearly compromised the whole system, as gaze
estimates tend to appear shifted by a certain degree from the user
perspective. The appearance-based method does not suffer from
this problem, but estimates seem to be more random. Figure 11
illustrates these phenomena.

Although the Gaussian processes regression might have shown
improved results in two metrics, it should be noted that it relies
on too many targets for training in order to provide a suitable
regression, whereas the geometric model, at least in theory, could
be already functional with much fewer targets. This over-reliance
on the number of samples by the appearance-based approach can
easily be observed in Figure 13.

Finally, although the results regarding angular error are still not
comparable to the eye-tracking industry standards, it is possible to
devise some uses for the proposed techniques in 3D AR scenarios,
such as allowing the user to have different contextual interfaces
based on gaze depth, or triggering access to detailed information
about scene objects by switching back and forth between the envi-
ronment and the HMD. With improvement on estimation accuracy,
vergence-based controls for 3D interaction could also be feasible.

8 CONCLUSION
To allow for a compelling gaze interaction in 3D environments, it
is essential to get a good estimate of the user’s PoR in the scene,
but gaze depth is still the main challenge to overcome for accurate
estimation in the scene volume. Our results suggest that further
investigation should be done in order to determine the effect of tar-
get positioning in regard to depth on the accuracy of the proposed
estimation methods, even for 3D interaction with non-continuous
depth. Finally, we expect that the proposed dataset as well as the
techniques and procedures presented here might instigate further
research on this topic.
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