
Fast 3D Stabilization and Mosaic Construction

Carlos Morimoto Rama Chellappa
Computer Vision Laboratory, Center for Automation Research

University of Maryland, College Park, MD 20742-3275
Carlos @cfar.umd.edu

Abstract

We present a fast electronic image stabilization system
that compensates for 3 0 rotation. The extended KalmanJil-
ter framework is employed to estimate the rotation between
frames, which is represented using unit quaternions. A small
set of automatically selected and tracked feature points are
used as measurements. The effectiveness of this technique
is also demonstrated by constructing mosaic images from
the motion estimates, and comparing them to mosaics built
from 2 0 stabilization algorithms. Two different stabiliza-
tion schemes are presented. The first, implemented in a real-
time platform based on a Datacube MV200 board, estimates
the motion between two consecutive frames and is able to
process gray level images of resolution 128x120 at 10 Hz.
The second scheme estimates the motion between the current
frame and an inverse mosaic; this allows better estimation
without the need for indexing the new image frames. Exper-
imental results for both schemes using real and synthetic im-
age sequences are presented.

1. Introduction

Camera motion estimation is an integral part of any com-
puter vision or robotic system that has to navigate in a dy-
namic environment. Whenever part of the camera motion is
not necessary (unwanted or unintended), image stabilization
can be applied as a useful preprocessing step before further
analysis of the image sequence. In this paper we use an iter-
ative extended Kalman filter (IEKF) to estimate the 3D mo-
tion of the camera. Stabilization is achieved by derotating
the input sequence [2,3,9].

We present two different stabilization algorithms. The
first estimates the motion between two consecutive frames
and was implemented in a real-time platform (a Datacube

OThe support of ARPA and ARO under contract DAAH04;93-G-0419,
and of the Conselho Nacional de Desenvolvimento Cientifico e Tec-
noldgico (CNPq), are gratefully acknowledged.

MV200 connected to a Sun Sparc 20). The second algo-
rithm computes the motion of the current frame relative to
an inverse mosaic. Computing the frame-to-mosaic motion
requires indexing (finding the approximate position of the
new image in the mosaic, in order to facilitate the motion
estimation process). We show in Section 4.1 how the use
of inverse mosaics can solve the indexing problem. For an
image sequence with n frames, a mosaic image can be con-
structed by placing the initial frame fo at the center of the
mosaic and then warping every new frame to its correct po-
sition up to frame fn. To build an inverse mosaic one can
first warp frame fn using the inverse motion parameters, and
then warp every previous frame down to frame fo. The in-
verse mosaic can also be computed directly from the mosaic
image, using a single global inverse transformation.

Most of the current image stabilization algorithms imple-
mented in real-time use 2D models due to their simplicity
[4, 81. Feature-based motion estimation or image registra-
tion algorithms are used by these methods in order to bring
all the images in the sequence onto alignment. For 3D mod-
els under perspective projection, the displacement of each
image pixel also depends on the structure of the scene, or
more precisely, on the depth of the corresponding 3D point.
It is possible to parameterize these models so that only the
translational components carry structural information, while
the rotational components are depth-independent. In this pa-
per, stabilization is defined as the process of compensating
for 3D rotation; this definition is also used in [2,3,9]. Com-
pensating for the camera rotation makes the image sequence
lookmechanically stabilized, as if the camera were mounted
on a gyroscopic platform. The fast implementation of the
3D stabilization system can process about 10 frames per sec-
ond for 8-bit gray level images of resolution 128 x 120 (with
maximum interframe displacement of 15 pixels), demon-
strating that IEKFs are efficient tools for 3D motion estima-
tion and real-time image analysis applications.

The rest of this paper is organized as follows: Section
2 describes the camera motion model used for parameter
estimation, which is the subject of Section 3. The details
of the two stabilization algorithms are presented in Section

1063-6919/97 $10.00 0 1997 IEEE 660

mailto:cfar.umd.edu

4, and experimental results from both algorithms using real
and synthetic image sequences are shown in Section 5. Sec-
tion 6 concludes the paper.

2. Camera Motion Model

Let P = (X, Y, Z)* be a 3D point in a Cartesian coordi-
nate system fixed on the camera and let p = (x, y)* be the
position of the image of P. The image plane defined by the
x and y axes is perpendicular to the Z axis and contains the
principal point (0, 0, f) . Thus the perspective projection of
a point P = (X, Y, Z)* onto the image plane is

where f is the camera focal length.
Under a rigid motion assumption, an arbitrary motion of

the camera can be described by a translation T and a rotation
R, so that a point P o at the camera coordinate system at time
t o is described in the new camera position at t l by

P i = R P o + T +

where R is a 3 x 3 orthonormal matrix.
For distant points (2, >> TX , Ty , and Tz), the displace-

ment is primarily due to rotation, and the projection of P1
can be obtained by

The use of distant features for motion estimation and im-
age stabilization has been addressed in [2 , 3 , 91. Such fea-
tures constitutevery strong visual cues that are present in al-
most all outdoor scenes, although it may be hard to guaran-
tee that all the features are distant. In this paper we estimate
the three parameters that describe the rotation of the camera
using an iterated extended Kalman filter (IEKF).

2.1. Quaternions and Unit Quaternions

In this section we introduce a few basic properties of
quaternions. More detailed descriptions can be found in
[5, 61. Quaternions are commonly used to represent 3D ro-
tation, and are composed of a scalar and a vector part, as in
4 = QO + q, where q = (qz, qY , q ,) T . The dot product op-
erator for quaternions is defined as 6.G = poqo + p.q, and
the norm of a quaternion is given by 141 = Q.4 = 902 + q.q.
A unit quaternion is defined as a quaternion with unit norm.

A unit quaternion can be interpreted as a rotation 8
around a unit vector w by the following equation: 4 =
sin(O/2) + w cos(B/2). Note that 4 and -4 correspond to
the same rotation since a rotation of 8 around a vector q is
equivalent to a rotation of -8 around the vector -9.

Let the conjugate of a quaternion be defined as q* = QO -
q, and the product of two quaternions as

Thus, the conjugate of 4 is also its inverse since (i*Q =
t# = 1. It is useful to have the product of quaternions
expanded in matrix form as follows:

Note that the multiplication of quaternions is associative but
it is not commutative, i.e., in general 64 is not the same as

The rotation of a vector or point P to a vector or point P'
46.

can be represented by a quaternion 4 according to

(0 + P') = q o + P)G* (6)

Composition of rotations can be performed by multipli-
cation of quaternions since

(7)

where it is easy to verify that (F*;i*) is equivalent to (@)*.
The nine components of the orthonormal rotation ma-

trix R in (2) can be represented by the parameters of a unit
quaternion simply by expanding (6) using (5) , so that

(0 + PI/) = q o + P')Q* =
q q o + P)P*);i* = (@)(O + P)(@)*

1-2.a;-2(1,2 2tQoQzS924y)
2(4OQ*sqZQY) 1-2Q2-2d

2(QoQxsqyQ*) 1-2q2-2q;

3. Motion Estimation

The dynamics of the camera is described as the evolu-
tion of a unit quaternion. An IEKF is used to estimate the
interframe rotation 4. EKFs have been extensively used for
the problem of motion estimation from a sequence of images
[I , 9, 101. In order to achieve real-time performance, this
framework is simplified here to compute only the rotational
parameters from distant feature points.

A unit quaternion has only three degrees of freedom due
to its unit norm constraint, so that it can be represented using
only the vector parameters. The remaining scalar parameter

66 1

is computed from qo = (1 - q: - q i - q,”) 4 . Only nonnega-
tive values of qo are considered, so that (8) can be rewritten

The state vector x and plant equations are defined as fol-
using (qz 1 QYI q z) only.

lows:

are actually used by the EKE The solution is refined itera-
tively by using the new estimate fi to evaluate H and h for
a few iterations. More detailed derivations of the Kalman
filter equations can be found in [7].

where ;i is a quaternion represented by its vector part only,
and n is the associated plant noise.

The following measurement equations are derived from
(3) :

(10)

where h is a nonlinear function which relates the current
state to the measurement vector z(ti), and 7 is the measure-
ment noise. After tracking a set of N feature points, a two
step EKF algorithm is used to estimate the total rotation.
The first step is to compute the state and covariance predic-
tions at time ti- 1 before incorporating the information from

Z (t i) = hili-l[x(ti)l + 17(ti)

Z (t i) by

(11)
% (t i) = %(t,f_,)

X (t L) = qt:-l) + XrI(ti-1)

where %(t:-,) is the estimate of ti-1) and X(t:-l) is
its associated covariance obtained based on the information
up to time 2(ta) and X (t a) are the predicted esti-
mates before the incorporation of the ith measurements; and
En(ti-l) is the covariance of the plant noise n(&-1).

The update step follows the previous prediction step.
When ti) becomes available, the state and covariance es-
timates are updated by

where K(ti) is a 3 x N matrix which corresponds to the
Kalman gain, X : , (t i) is the covariance of ti) and I is a
3 x 3 identity matrix. Hili-1 is the linearized approxima-
tion of hili- 1, defined as

A batch process using a least-square estimate of the rota-
tional parameters can be used to initialize the algorithm, as
in [9], but for the experiments shown in Section 5 we simply
assume zero rotation as the initial estimate.

To speed up the process and reduce the amount of compu-
tation that is required to achieve real-time performance, the
measurement vectors are sorted according to their fits to the
previous estimate, so that only the best M points (M < N)

4. Image Stabilization

Real-time image stabilization systems have been de-
scribed in [4, 81. They are based on 2D similarity or affine
motion models, and use multi-resolution to compensate for
large image displacements. Each algorithm was optimized
for a different image processing platform. Part of the system
described in this paper is based on the system presented in
[SI. As in [2,3,9], image stabilizationis defined as the pro-
cess of compensating for the 3D camera rotation, i.e., stabi-
lization is achieved by derotating the image sequence. Ro-
tation is estimated as described above, using the tracked fea-
ture positions as measurements.

Figure 1 shows the block diagram of the image stabi-
lization system, which was implemented in a real-time im-
age processing platform based on a Datacube MV200 board.
The Datacube board is based on a parallel architecture com-
posed of several image processing elements which can be
connected into pipelines in order to accomplish image pro-
cessing tasks. Image acquisition, pyramid construction, and
image warping are performed by the Datacube. The host
computer performs tracking, estimates the rotation based on
the algorithm presented in Section 3, and finally combines
the interframe estimates to determine the global transforma-
tion used to stabilize the current image frame. The host is
also responsible for the user interface module, which is not
shown in the block diagram.

I I I I I Camera Laplacian 74 ‘eat[re I
Detection

7 Tracking I

Motion
Cof:%&tion b-1 Estimation i I Warping

I I L 1 1 I

Figure 1. Block diagram of the real-time image
stabilization system.

A small set of feature points are detected and hierarchi-
cally tracked with subpixel accuracy between two consecu-
tive frames, using the method described in [8]. The feature
displacements are then used by the IEKF to update the rota-
tion estimate. The interframe estimates must be combined

662

in order to obtain the global transformation which stabilizes
the current frame relative to.the reference frame. If p i - 1 is
the previous global rotation, and & is the interframe motion
between frames i and i - 1, the new global rotation fii is
obtained by multiplying two quaternions: p i = qif i i -1 . Fi-
nally, the new global estimate is used by the image warper
to generate the stabilized sequence.

The simplicity of this method allows its implementation
on our real-time platform. This system can be modified to
construct panoramic views of the scene (mosaics), which
can also be used to facilitate the motion estimation process.
The construction and registration of the current frame to
a mosaic image can reduce the estimation errors when the
camera motion predominantly consists of lateral translation
or pan and tilt.

4.1. Registration to an Inverse Mosaic

Building a mosaic image from 2D affine motion param-
eters or 3D rotation parameters can be done by appropri-
ately warping each pixel from the new frame into its corre-
sponding mosaic position, but in general, better results are
achieved when the target image (i.e. the mosaic image) is
scanned and the closest pixel value from the new frame (or
the result of a small-neighborhood interpolation around that
pixel) is inserted into the mosaic.

To register a new frame to the mosaic, it is desirable to
have a rough estimate of its correct placement. Finding this
initial estimate is known as indexing. Hansen et al. [4]
solve the indexing problem by correlating small “represen-
tative landmark” regions of the new frame with the mosaic.
Depending on the warping of the current frame, though,
this technique could fail. To increase the robustness of this
scheme, it is possible to pre-warp the current frame based on
the previous estimate; this brings the current frame close to
its true position in most cases, but it still may be difficult to
register the warped image to the mosaic. The use of inverse
mosaics avoids the indexing problem by keeping the previ-
ous frame always at a fixed position, e.g., at the center of the
mosaic, and without any distortions due to warping, which
increases the probability of high correlation of overlapping
areas.

Figure 2 shows the block diagram of the stabilization sys-
tem based on inverse mosaics. In order to track features of
different image resolutions, a mosaic pyramid is built from
the Gaussian pyramid of the current frame and the global
motion estimate. The inverse mosaic pyramid is obtained
by warping the mosaic pyramid using the inverse global mo-
tion estimate. Features detected in the new frame are hierar-
chically tracked in the inverse mosaic pyramid, and the es-
timation procedure used in the frame-to-frame algorithm is
applied. The new estimate is then used to update the mosaic
and inverse mosaic pyramids for the next iteration. The pro-

I I
IL I Gaussian I Inverse 1 Tracking I

Pyramid Mosaic

I I t
t

Motion Motion
Compensation Estimation

Figure 2. Block diagram of the stabilization
system using inverse mosaics.

cess has to be reinitialized with the creation of a new mosaic
pyramid (or new tiles [4]) whenever a frame is warped out-
side the mosaic.

Besides the extra computational cost, one drawback of
this method is that in general warping requires interpolation,
so that the inverse mosaic may be over-smoothed. In the ex-
periments presented in the following section, we compen-
sate for the over-smoothing effect by using larger correla-
tion windows (instead of changing the warping scheme to
nearest-neighbor selection, which avoids interpolation but
creates some artifacts).

5. Experimental Results

In this section we present experimental results for both
of the algorithms described above. We are forced here to
show only single frames from the stabilized and mosaic se-
quences, where video sequences would be much more ap-
propriate. We invite the reader to look at these videos,
available in MPEG format, at the following WWW address:
http://www.cfar.umd.eduTcarlos/cvpr!97.html. In the fol-
lowing sections, a file at this address named “mosaic” will
be referenced by http: [mosaic].

Figure 3 is an example of the results obtained from the
fast 3D derotation system using an off-road sequence pro-
vided by NIST. The camera is rigidly mounted on the ve-
hicle and is moving forward. The top row shows the 5th
frame of the input sequence (left) and its corresponding sta-
bilized frame (right). The original and stabilized sequences
are available at http:[seq-1 .mpg]. The difference between
the top-left image and the 10th input frame is shown on
the bottom left, and the difference between the correspond-
ing stabilized frames on the bottom right. The darkness of
a spot on the bottom images is proportional to the differ-
ence of intensity between the corresponding spots in each
frame. Since stabilization has to compensate for the mo-
tion between frames, the difference images can be consid-
ered as error measurements which stabilization attempts to

663

http://www.cfar.umd.eduTcarlos/cvpr!97.html
http:[seq-1

minimize. Observe that the regions around the horizon line
are very light due to stabilization. Errors are bigger around
objects that are closer to the camera (darker regions), since
they have large translational components which are not com-
pensated by our method.

-1
k I

I
Figure 3.3D image stabilization results.

The real-time implementation typically detects and
tracks 9 feature points between frames, selects the best 7
based on the correlation results, and then uses the 4 points
which best approximate the current rotation estimate. The
maximum feature displacement tolerated by the tracker is
set to 15 pixels. Under these settings, the system is able to
process approximately 9.8 frames per second.

Figure 4 shows the result of the frame-to-mosaic algo-
rithm presented in Section 4.1 for 30 frames of a synthetic
sequence which simulates dominant lateral translation with
small rotations around the optical axis. The sequence was
generated by warping and cuttingregions (of size 128 x 128)
from a bigger image (of size 512 x 512). The maximum
translation between frames was set to 10 pixels and the max-
imum rotation to 3 degrees. Figures 4a and 4b show re-
sults for the 15th and 26th frames respectively. Each figures
shows the inverse mosaic on top; the regular mosaic (left)
and current input frame (right) are shown at the bottom. The
box in the center of the inverse mosaic corresponds to the
last frame put into the regular mosaic and also serves as
the initial estimate (index) of the region to be registered to
the next frame. After frame 16, the camera starts to move
back to its original position, and the overlap of the current
frame with the mosaic is almost 100%. For this particular
sequence, the real-time frame-to-frame algorithm produced

Figure 4.. Registration to an inverse mosaic.

a very similar result, except for a few artifacts due to the ac-
cumulation of error.

The last example compares the real-time 3D algorithm
with the real-time similarity model-based algorithm pre-
sented in [8]. They both use the same set of 11 feature points
for motion estimation. The 2D algorithm uses all of them to
fit a similarity model using least-squares, and the 3D model
uses only the four points which best approximate the current
rotation estimate.

The original sequence is composed of 200 frames and the
dominant motion is left-to-right panning. To help in com-
parison and visualization, the reference frame was assumed
to be the 100th frame, and appears at the center of the mo-
saics. The first column shows the 50th, 100th, and 200th
frames from top to bottom. The second column shows the
corresponding mosaic images constructed from the 2D esti-
mates, and the third column shows the corresponding mo-
saics constructed using the 3D estimates. Since the cam-
era calibration is unknown, we “guessed” the camera FOV
to be 3 x 4 focal lengths. The mosaic from the 2D esti-
mates (http:[seq-3.mpgl) does a goodjob locally, but the 3D

664

http:[seq-3.mpgl

I I

Figure 5. Mosaics from 200 frames of a left-to-right panning sequence.

mosaic (http:[seq-4.mpgl) looks much more natural, as if
it were a panoramic picture taken using fish eye lens. The
original sequence and the 3D stabilized output can be seen
at http:[seq-5.mpgl.

6. Conclusion

We have presented a 3D model-based real-time stabiliza-
tion system that estimates the motion of the camera using an
IEKE Stabilization is achieved by derotating the input cam-
era sequence. Rotations are represented using unit quater-
nions, whose good numerical properties contribute to the
overall performance of the system. The system was im-
plemented in a real-time image processing platform (a Dat-
acube MV200 connected to a Sun Sparc 20) and is able to
process 128 x 120 images at approximately 10 Hz.

The system has been successfully tested under a variety
of situations that include dominant forward and lateral trans-
lations with small rotations, as well as panning. We have
built mosaic images for these last two cases, and for the par-
ticular case of panning, we compared the results of the 3D
algorithm with those of a 2D similarity model-based algo-
rithm to show that 3D mosaicking provides more natural
panoramic views.

We are currently extending the motion models to include
translation parameters, which we believe will contribute to
make the system more robust and able to generate more real-
istic mosaics. We are also investigating the applicability of
these motion estimation, image stabilization, and mosaick-
ing techniques to video coding.

References

T. Broida and R. Chellappa. Estimation of object motion pa-
rameters from noisy images. IEEE Trans. Pattern Analysis
and Machine Intelligence, 8(1):90-99, January 1986.
L. Davis, R. Bajcsy, R. Nelson, and M. Herman. RSTA on
the move. In Proc. DARPA Image Understanding Workshop,
pages 435-456, Monterey, CA, November 1994.
Z. DuriC and A. Rosenfeld. Stabilization of image sequences.
Technical Report CAR-TR-778, Center for Automation Re-
search, University of Maryland, College Park, 1995.
M. Hansen, P. Anandan, K. Dana, G. van der Wal, and
P. Burt. Real-time scene stabilization and mosaic construc-
tion. In Proc. DARPA Image Understanding Workshop,
pages 457-465, Monterey, CA, November 1994.
B. K. P. Hom. Closed-form solution of absolute orienta-
tion using unit quatemions. Journal of the Optical Society
ofAmerica, 4(4):629-642, April 1987.
K. Kanatani. Group-Theoretical Methods in Image Under-
standing. Springer-Verlag, Berlin, Germany, 1990.
P. Maybeck. Stochastic Models, Estimation and Control.
Academic Press, New York, NY, 1982.
C. Morimoto and R. Chellappa. Fast electronic digital image
stabilization. In Proc. International Conference on Pattern
Recognition, Vienna, Austria, August 1996.
Y. Yao, P. Burlina, and R. Chellappa. Electronic image sta-
bilization using multiple visual cues. In Proc. International
Conference on Image Processing, pages 19 1-194, Washing-
ton, D.C., October 1995.
G.-S. J. Young and R. Chellappa. 3D motion estimation us-
ing a sequence of noisy stereo images: models, estimation,
and uniqueness results. IEEE Trans. Pattern Analysis and
Machine Intelligence, 12(8):735-759, August 1990.

665

http:[seq-4.mpgl
http:[seq-5.mpgl

