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Abstract

We present two fast implementations

of electronic image stabilization and

mosaicking systems. The �rst one is

based on a 2D similarity model and is

targeted to process PREDATOR video

data. The second system uses a 3D

model and compensates for 3D rota-

tion. Both systems have been im-

plemented on parallel pipeline image-

processing hardware (a Datacube Max-

Video 200) connected to a Themis

10MP. Both algorithms use a feature-

based multi-resolution technique which

tracks a small set of features to esti-

mate the motion of the camera. The

extended Kalman �lter framework is

employed by the 3D de-rotation sys-

tem. The inter-frame motion estimates

relative to a reference frame are used

to warp the current frame in order to

achieve stabilization. The estimates are

also used to construct mosaics by align-

ing the frames. A fast mosaicking im-

plementation is presented for the 2D

system. Experimental results demon-

strate the robustness of both systems

at frame rates above 10 frames/second.

1 Introduction

Camera motion estimation is an integral part of

any computer vision or robotic system that has

to navigate in a dynamic environment. When-

ever part of the camera motion is not necessary

or \unwanted", image stabilization can be ap-

plied as a preprocessing step before further anal-

ysis of the image sequence. It can be used as a

front-end system in a variety of dynamic image

analysis applications or simply as a visualization
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tool. Image stabilization has been used for the

computation of egomotion

[

Vi�eville et al., 1993;

Irani et al., 1994

]

, video compression

[

Kwon et

al., 1995; Morimoto et al., 1996

]

, and detection

and tracking of independently moving objects

[

Balakirsky, 1995; Burt and Anandan, 1994;

Morimoto et al., 1995

]

. For more natural visu-

alization, vehicle models are used to �lter high-

frequency or oscillatory motion components due

to irregularities of the terrain

[

Duri�c and Rosen-

feld, 1995; Yao et al., 1995

]

.

Methods proposed for electronic image stabi-

lization can be distinguished by the models

adopted to estimate the camera motion. Sev-

eral 2D and 3D stabilization schemes are de-

scribed by Davis et al.

[

Davis et al., 1994

]

.

For 2D models, all the estimated motion pa-

rameters are in general compensated for, i.e.,

all motion is removed from the input sequence

[

Burt and Anandan, 1994; Irani et al., 1995;

Sawhney et al., 1995

]

.

For 3D models under perspective projection, the

displacement of each image pixel will also de-

pend on the structure of the scene, or more

precisely, on the depth of the corresponding

3D point. It is possible to parameterize these

models so that only the translational compo-

nents carry structural information, while the

rotational components are depth-independent.

Stabilization in 3D is achieved by derotating

the frames, generating a translation-only se-

quence, or a sequence containing only trans-

lation and low-frequency rotation (smoothed

rotation)

[

Duri�c and Rosenfeld, 1995; Yao et

al., 1995

]

. By compensating for the camera

rotation, the resulting image sequence looks

mechanically stabilized, as if the camera were

mounted on a gyroscopic platform.

Most of the current image stabilization algo-

rithms that have been implemented in real time

use 2D models due to their simplicity

[

Hansen

et al., 1994; Morimoto and Chellappa, 1996

]

.

Feature-based motion estimation or image reg-

istration algorithms are used by these methods



in order to bring all the images in the sequence

into alignment. These algorithms are targeted

to speci�c real-time image processing platforms.

The systems operate with images of resolution

128 � 128 at above 10 frames per second, and

are robust to large image displacements. The

system developed by Hansen et al.

[

Hansen

et al., 1994

]

uses a mosaic-based registration

technique implemented on pyramidal hardware

(VFE-100). The system uses a multi-resolution,

iterative process to estimate the a�ne motion

parameters between levels of Laplacian pyramid

images. From coarse to �ne levels, the opti-

cal 
ow of local patches of the image is com-

puted using a cross-correlation scheme. The

motion parameters are then computed by �t-

ting an a�ne motion model to the 
ow. These

parameters are used to warp the previous image

of the next �ner pyramid level to the current im-

age, and the re�nement process continues until

the desired precision is achieved. This scheme,

combined with the construction of a mosaic im-

age, allows the system to cope with large image

displacements.

In this paper we present two image stabiliza-

tion systems based on 2D and 3D models. The

2D system includes several modi�cations to the

system presented in

[

Morimoto et al., 1995

]

, in

order to process data from PREDATOR video,

which are sequences taken from an airborne

platform and are characterized by low quality

and relatively low inter-frame displacement (less

than 10% of the image size). Most of the modi�-

cations were necessary because of the low qual-

ity of the video sequences, due to lossy com-

pression. The second system uses an extended

Kalman �lter (EKF) to estimate the 3D motion

of the camera, and stabilization is achieved by

derotating the input sequence.

Both systems were implemented on a Datacube

MaxVideo 200 card plugged into the same VME

backplane as a Themis 10MP. The MV200 is

a parallel pipeline image processing board very

commonly used for real-time image processing,

and the Themis is a dual 100MHz hyperSPARC

board which is running Solaris 2.4. They are

able to process about 10 frames per second for

8-bit gray level images of resolution 128� 120.

The 2D system is also able to construct mosaic

images in real time, directly onto a window on

the host computer.

This paper is organized as follows. Section 2

introduces the 2D model-based image stabiliza-

tion algorithm; the 3D algorithm is described in

Section 3. Section 4 describes the implementa-

tion of the real-time 2D mosaicking display and

how 3D mosaics can also be computed. Sec-

tion 5 shows experimental results of the perfor-

mance of both systems, and Section 6 concludes

the paper.

2 2D Image Stabilization Algorithm

The 2D similarity model-based image stabiliza-

tion system is based on the fast implementation

of the image stabilization algorithm presented

in

[

Morimoto et al., 1995

]

. A basic stabilization

system is composed of three modules shown in

Figure 1. The motion estimation module com-

putes the motion or global transformation be-

tween consecutive frames which is used by the

motion compensation module to determine the

global transformation which brings the newest

frame into alignment with the reference frame.

The image composition module generates the

stabilized sequence and/or mosaic by warping

the current frame using the motion estimates.

Section 4 describes how the motion estimates

are also used to construct a mosaic in real time

by directly aligning the current frame with the

mosaic constructed from previous frames.

Motion Motion 

Compensation

Image

CompositionEstimationV
in Vout

Figure 1: Modules of a general electronic image

stabilization system.

A block diagram of the 2D system is shown in

Figure 2. The modules inside the dotted line

are performed by the Datacube board, while the

other modules are processed by the host com-

puter. The Datacube digitizes the video sig-

nal from the camera and builds Gaussian and

Laplacian pyramids for each new frame. The

Laplacian pyramid is used for feature detection

and tracking is performed on the Gaussian im-

ages. Feature detection and tracking, motion

estimation, motion compensation, and mosaic

construction are done by the host computer.

The Datacube also receives the computed global

motion to warp the current frame and generates

the stabilized video output.

2.1 Motion Estimation

The structure of the motion estimation mod-

ule is similar to the feature-based multi-

resolution image registration algorithm pre-

sented in

[

Zheng and Chellappa, 1993

]

. Start-

ing from the coarsest Laplacian pyramid level,

a small number of non-overlapping regions are

scanned, and the pixel with maximum intensity

in each region is selected for tracking. Each fea-

ture is tracked between the corresponding Gaus-

sian pyramid level of the current and previous

frames, using the sum of absolute di�erences

(SAD) as similarity measure.

The SAD between two windows of size 2W + 1

centered at feature point P

t

(x; y) and its match-

ing candidate P

t�1

(u; v) is given by
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Figure 2: Block diagram of the 2D stabilization

and mosaicking system.

SAD =

X

ij

j(P

t

(x+i; y+j)� P

t�1

(u+i; v+j)j

(1)

where i and j vary from �W to +W . A match

is obtained by searching for the minimum SAD

over a neighborhood (search window) around

the feature. For a feature at pixel coordi-

nates (x; y), the search is performed by varying

the candidate coordinates (u; v) in the interval

[(x � S) : : :(x + S); (y � S) : : :(y + S)], where

2S + 1 de�nes the search window size. After

the grid-to-grid matches are obtained, displace-

ments with subpixel accuracies are computed

using a di�erential method

[

Tian and Huhns,

1986

]

. Subpixel accuracy is necessary to elimi-

nate the quantization error introduced when the

images are digitized.

The feature displacements are then used to �t

a four-parameter similarity model de�ned by

�

x

i

y

i

�

=S

�

cos� � sin�

sin� cos�

��

x

i�1

y

i�1

�

+

�

�x

�y

�

(2)

where (x

i

; y

i

) are the image frame coordinates

at time t

i

, (�x �y)

t

is the translation vector

measured in the image coordinate system of the

frame at t

i

(f

i

), � is the rotation angle between

the two frames and S is the scaling factor. No-

tice that S is inversely proportional to the ratio

of the distances between two arbitrary image

points at times t

i

; t

i�1

. Thus S can be com-

puted given a set of matched points from both

frames, independently of the translation and ro-

tation between them.

The scaling factor S is estimated �rst by com-

puting the ratio of the distances in the feature

sets relative to their center of mass. Assum-

ing small rotation, the trigonometric terms in

(2) can be linearized to compute the remain-

ing translation and rotation parameters. A sys-

tem of linear equations is then obtained by sub-

stituting all N matched feature pairs into the

linearized equations. Each pair introduces two

equations; hence the linear system has 2N equa-

tions and three unknowns (�, �X , and �Y ),

and can be solved by a least-squares method.

The motion parameters obtained from the

coarsest pyramid level are used to warp the

next higher pyramid level of the previous Gaus-

sian pyramid, and the process of tracking, esti-

mation, and warping repeats until the highest-

resolution image is reached. For an arbitrary

pyramid level, the new estimate must be com-

bined with the previous coarser-level estimate

before warping the image at the next higher

pyramid level (an initial zero motion is assumed

for the coarsest level). Assuming that the to-

tal motion estimate from the coarser levels is

M

i�1

= (�x

i�1

;�y

i�1

;�

i�1

;S

i�1

) and the es-

timate for the current level is m

i

= (d

x

; d

y

; �; s),

the new total motion estimate M

i

used to warp

the next higher resolution image can be easily

derived to be

[

Zheng and Chellappa, 1993

]

M

i

= (�x

i

�y

i

�

i

S

i

)

T

=

0

B

@

s cos ��x

i�1

� s sin ��y

i�1

+ d

x

s sin ��x

i�1

+ s cos ��y

i�1

+ d

y

� +�

i�1

s � S

i�1

1

C

A

(3)

2.2 Motion Compensation

The motion compensation module keeps a his-

tory of the inter-frame motion to remove what is

unwanted and compute the warping parameters

that will stabilize the current image frame. One

of the advantages of electronic image stabiliza-

tion systems is that motion can be compensated

on demand, o�ering great 
exibility by simply

modifying some parameters of the compensa-

tion module.

The motion compensation module keeps track

of the total combined motion, from the refer-

ence frame up to the current frame. When a

new estimate is sent from the motion estima-

tion module, the total motion is updated using

(3).

Our system does not perform temporal smooth-

ing on any of the motion parameters, but allows

the user to dynamically mask (enable/disable)

each parameter independently, for display pur-

poses. For example, when the camera moves

forward, producing a divergent image 
ow, the

computed transformation includes a reduction

in scale, which basically eliminates the percep-

tion of forward motion by producing a shrinking

image with internal zero 
ow. The forward mo-

tion perception is restored by simply masking

the scaling factor on display.



3 3D Image Stabilization Algorithm

The 3D model-based stabilization algorithm

uses an extended Kalman �lter (EKF) to esti-

mate the rotation between frames, which is rep-

resented using unit quaternions. A small set of

feature points is tracked as described previously,

except that no estimation re�nement is com-

puted between pyramid levels, i.e., the features

are simply scaled between levels, in a similar

way to the greedy multi-resolution search im-

plemented in

[

Morimoto and Chellappa, 1996

]

.

3.1 Camera Motion Model

Let P = (X; Y; Z)

T

be a 3D point in a Cartesian

coordinate system �xed on the camera and let

p = (x; y)

T

be the corresponding image position

of P (see Figure 3). The image plane de�ned

by the x and y axes is perpendicular to the Z

axis and contains the principal point (0; 0; f).

Thus the perspective projection of a point P =

(X; Y; Z)

T

onto the image plane is

p =

�

x

y

�

=

 

f

X

Z

f

Y

Z

!

(4)

where f is the camera focal length.
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Figure 3: Diagram of the coordinate system

�xed on the camera

Under a rigid motion assumption, an arbitrary

motion of the camera can be described by a

translation T and a rotation R, so that a point

P

0

in the camera coordinate system at time t

0

has a new camera position at time t

1

given by

P

1

= RP

0

+ T)
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where R is a 3� 3 orthonormal matrix.

The projection of P

1

can be obtained by com-

bining (4) and (5):

p
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X
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f
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T
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(6)

For distant points (Z

0

� T

X

; T

Y

; and T

Z

), the

displacement is basically due to rotation, and

thus (6) simpli�es to

p

1

=

0

@

f

(r

11

x

0

+r

12

y

0

+r

13

f)

(r

31

x

0

+r

32
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0

+r

33

f)

f

(r

21

x

0

+r

22

y

0

+r

23

f)

(r

31

x

0

+r

32

y

0

+r

33

f)

1

A

(7)

The use of distant features for motion estima-

tion and image stabilization has been addressed

before in

[

Davis et al., 1994; Duri�c and Rosen-

feld, 1995; Yao et al., 1995

]

. Such features con-

stitute very strong visual cues that are present

in almost all outdoor scenes, although it might

be hard to guarantee that all the features are

distant. In this paper we estimate the three pa-

rameters that describe the rotation of the cam-

era using an iterated extended Kalman �lter

(IEKF).

3.1.1 Quaternions

Common ways to represent rotation include 3�

3 orthonormal matrices, Euler angles, axis plus

angle, and unit quaternions

[

Kanatani, 1990

]

.

Young and Chellappa

[

Young and Chellappa,

1990

]

used quaternions for the problem of 3D

motion estimation from noisy stereo sequences,

and Horn

[

Horn, 1987

]

used quaternions to solve

the absolute orientation problem from three or

more point correspondences. Many other ap-

plications of quaternions can be found in pho-

togrammetry, robotics and computer vision be-

cause of their compactness and good numerical

properties, which facilitate the process of rota-

tion estimation.

Quaternions are 4-tuples (q

0

; q

x

; q

y

; q

z

) that can

be interpreted as complex numbers with one

real (q

0

) and three imaginary parts (q

x

; q

y

; q

z

),

as a scalar plus a 3D vector, or simply as a vec-

tor in 4D-space. To see how quaternions can

represent rotations, consider a 3D unit sphere

de�ned by X

2

+Y

2

+Z

2

= 1. The position of a

point on the surface of the sphere can directly

represent pan and tilt but not roll. By intro-

ducing a fourth parameter, it is now possible to

represent an arbitrary 3D rotation by a point

on a 4D unit sphere where q

2

0

+q

2

x

+q

2

y

+q

2

z

= 1.

3.1.2 Relevant Properties of Unit

Quaternions

In this section we present only a few basic prop-

erties of quaternions. More detailed treatments



can be found in

[

Horn, 1987; Kanatani, 1990

]

.

Consider a quaternion as composed of a scalar

and a vector part, as in

�q = q

0

+ q; q = (q

x

; q

y

; q

z

)

T

(8)

The dot product operator for quaternions is de-

�ned as �p:�q = p

0

q

0

+ p:q, and the norm of a

quaternion is given by j�qj = �q:�q = q

2

0

+ q:q.

Unit quaternions are simply de�ned as quater-

nions with unit norm.

A unit quaternion can be interpreted as a rota-

tion � around a unit vectorw using the equation

�q = sin(�=2)+w cos(�=2). Note that �q and ��q

correspond to the same rotation since a rotation

of � around a vector q is equivalent to a rotation

of �� around the vector �q.

Let the conjugate of a quaternion be de�ned as

�q

�

= q

0

� q (9)

and the multiplication of two quaternions as

�r = �p�q =

�

r

0

= p

0

q

0

� p:q;

r = p

0

q+ q

0

p+ p� q:

(10)

Thus, the conjugate of �q is also its inverse since

�q

�

�q = �q�q

�

= 1. It is useful to have the multipli-

cation of quaternions expanded in matrix form

as follows:

�p�q =

0
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C

A

(11)

Note that the multiplication of quaternions is

associative but it is not commutative, i.e., in

general �p�q is not the same as �q�p.

The rotation of a vector or point P to a vector

or point P

0

can be represented by a quaternion

�q according to

(0 + P

0

) = �q(0 +P)�q

�

(12)

Composition of rotations can be performed by

multiplication of quaternions since

(0 + P

00

) = �q(0 + P

0

)�q

�

=

�q(�r(0 + P)�r

�

)�q

�

= (�q�r)(0 +P)(�q�r)

�

(13)

where it is easy to verify that (�r

�

�q

�

) is equiva-

lent to (�q�r)

�

.

The nine components of the orthonormal rota-

tion matrix R in (5 ) can be represented by the

parameters of a unit quaternion simply by ex-

panding (12) using (11), so that

R =

0

@

1�2q
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y

�2q

2

z

2(�q

0

q

z

+q

x

q

y

) 2(q

0

q

y

+q

x

q

z

)

2(q

0

q

z

+q

x

q

y

) 1�2q

2

x

�2q

2

z

2(�q

0

q

x

+q

y

q

z

)

2(�q

0

q

y

+q

x

q

z

) 2(q

0

q

x

+q

y

q

z

) 1�2q

2

x

�2q

2

y

1

A

(14)

3.2 3D Motion Estimation

The dynamics of the camera is described as

the evolution of a unit quaternion, and an

IEKF is used to estimate the inter-frame rota-

tion �q. EKFs have been extensively used for

motion estimation from a sequence of images

[

Broida and Chellappa, 1986; Yao et al., 1995;

Young and Chellappa, 1990

]

. In order to achieve

real-time performance, this framework was sim-

pli�ed to compute only the rotational parame-

ters from distant feature points.

A unit quaternion has only three degrees of free-

dom due to its unit norm constraint, so that it

will be represented using only the vector pa-

rameters. The remaining scalar parameter is

computed from

q

0

= (1� q

2

x

� q

2

y

� q

2

z

)

1

2

(15)

Only nonnegative values of q

0

in (15) are con-

sidered, so that (14) can be rewritten using

(q

x

; q

y

; q

z

) only.

The state vector x and plant equations are de-

�ned as follows:

x

def

= �q+ n

_x = 0

)

) x(t

i+1

) = x(t

i

) (16)

The following measurement equations are de-

rived from (7):

z(t

i

) = h

iji�1

[x(t

i

)] + �(t

i

) (17)

where h is a nonlinear function which relates the

current state to the measurement vector z(t

i

),

and � is the measurement noise. After tracking

a set of N feature points, a two-step EKF algo-

rithm is used to estimate the total rotation. The

�rst step is to compute the state and covariance

predictions at time t

i�1

before incorporating the

information from z(t

i

) by

x̂(t
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where x̂(t

+

i�1

) is the estimate of x(t

i�1

) and

�(t

+

i�1

) is its associated covariance obtained

based on the information up to time t

i�1

; x̂(t

�

i

)

and �(t

�

i

) are the predicted estimates before

the incorporation of the i

th

measurements; and

�

n

(t

i�1

) is the covariance of the plant noise

n(t

i�1

).

The update step follows the previous prediction

step. When z(t

i

) becomes available, the state

and covariance estimates are updated by
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iji�1
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Figure 4: Mosaic from the 2D fast stabilization

algorithm

whereK(t

i

) is a 3�N matrix which corresponds

to the Kalman gain, �

�

(t
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) is the covariance of
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) and I is a 3 � 3 identity matrix. H
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A batch process using a least-square estimate of

the rotational parameters can be used to initial-

ize the algorithm, as in

[

Yao et al., 1995

]

, but for

the experiments shown in Section 5 we simply

assume zero rotation as the initial estimate.

To speed up the process and reduce the amount

of computation that is required to achieve real-

time performance, the measurement vectors are

sorted according to their �ts to the previous es-

timate, so that only the bestM points (M < N)

are actually used by the EKF. The solution is

re�ned iteratively by using the new estimate

x̂

i

to evaluate H and h, for a few iterations.

More detailed derivations of the Kalman �l-

ter equations can be found in

[

Jazwinski, 1970;

Maybeck, 1982

]

.

4 Fast 2D Mosaicking

Implementation

The goal of creating a mosaic image is to rep-

resent a scene which has a larger �eld of view

than the input sensor. This may be accom-

plished by combining individual frames which

depict portions of the overall scene. By appro-

priately pasting these frames together, we can

generate a panoramic view of the original scene.

We refer to this procedure as mosaicking.

Through the use of the motion stabilization

technique described in Section 2, it is possible

to not only compensate for inter-frame motion,

but also to keep track of the motion parame-

ters which represent image frame changes with

respect to a global coordinate system. We are

then able to paste each incoming frame into our

global picture. This process generates a mosaic

of the imaged scene.

A fast mosaicking system for PREDATOR

video data was implemented as an extension to

the stabilization system, and runs on the same

platform. This extended system can be bro-

ken down into two distinct processing threads:

a real-time thread for performing the image pro-

cessing in conjunction with the Datacube card,

and a mosaic thread which controls the display

and user interface. The two threads communi-

cate with each other through UNIX pipes. By

using an X-Windows interface, the actual dis-

play head for the mosaic may be thousands of

miles from the processor. This may be accom-

plished by setting the display head to be any

X-Windows-compatible terminal which is net-

worked to the mosaic processor.

The last stage of the real-time thread warps the

highest pyramid level of the current frame to

be an integer o�set from the global coordinate

frame. This warp is accomplished on the Data-

cube through the use of an a�ne transform, and

removes all scale, rotation, and fractional pixel

shifts. This warped image is then sent to the

display process along with its location in the

global system. The display process starts with

a blank global image, and adds each incoming

image segment to this image.

In our current implementation of the mosaick-

ing process, the global image is treated as a

write-once medium which is unlimited in size.

There are two reasons behind this. The �rst is

that the error in the stabilization algorithm is

cumulative. Therefore, if the camera dwells on

a particular area for an extended period of time,

image drift which distorts the mosaic is notice-

able. By providing a write-once memory, mo-

saic discontinuities are con�ned to a single line

in the image. This makes for a much more view-

able mosaic. The second reason for the write-

once memory is to reduce the display channel

bandwidth. It is possible to foresee applications

where the image processor may be located at a

remote ground (or air) station and may only

be connected to the user's console by a low-

bandwidth link. We hope to show that our mo-

saic creation technique allows for realistic scene

generation while consuming little communica-

tion bandwidth.

In order to avoid running out of room for the

generation of a mosaic, the global image is

treated as if it were unlimited in size. In re-

ality, the image storage size is constrained by

the user, and the image is scrolled to maintain

the current view on the screen. Areas which

scroll o� the edge of the display are lost.

5 Experimental Results

Since still images are not the most appro-

priate way of displaying the results of a



dynamic process such as stabilization, we

have made the original, stabilized and mo-

saicked sequences available in MPEG for-

mat at http://www.cfar.umd.edu/~carlos/

IUW97.html. In the following sections, an

MPEG �le at this address named Mosaic will

be referenced by http:Mosaic.

5.1 2D Stabilization and Mosaicking

Results

This section presents experimental results from

the fast 2D stabilization and mosaicking system

applying to PREDATOR video data. Our data

tape has been through several recording gener-

ations, and is of moderate to poor quality.

Figures 4 and 5 show mosaic images from

PREDATOR video data using the mosaicking

process described above. Reliable image sta-

bilization requires large overlap between image

frames and reasonably high frame rates. Fortu-

nately this is signi�cantly less important for the

display thread. Since the mosaic is treated as

write-once memory, overlapping areas of the im-

age are ignored. Therefore, it is necessary that

there be only a small overlap between frames

in order to provide a continuous mosaic. This

allows us to discard frames from the real-time

thread without displaying them. Running on

the hardware described above, our real-time

thread was able to run at approximately 10

frames per second. The display thread was set

up to process every fourth image which was gen-

erated by the real-time thread. The rest of the

images were discarded.

The images used to generate the mosaic were

from the top level of the image pyramid. This

corresponds to an image resolution of 128x120

pixels. The bandwidth which would be neces-

sary to transmit the mosaic in real time is image

sequence dependent. The use of the write-once

memory dictates that the required bandwidth

is directly related to the amount of new infor-

mation contained in each mosaic frame. For the

mosaics shown in Figures 4 and 5, we recorded

an average bandwidth of 15993 bytes per sec-

ond, for a two frame per second mosaic update

rate. This is an 89% improvement over sending

the entire raw sequence.

5.2 3D Stabilization and Mosaicking

Results

Figure 6 is an example of the results from our

real-time 3D de-rotation system using an o�-

road sequence provided by NIST. The camera

is rigidly mounted on the vehicle and is mov-

ing forward. The top row shows the �fth frame

from the input sequence (left) and its corre-

sponding stabilized frame (right). The orig-

inal and stabilized sequences are available at

Figure 6: Image stabilization results. The top

row contains the �fth frame (left) and its corre-

sponding stabilized frame (right). The bottom

row shows the di�erence between two frames

of the input sequence (left) and the di�erence

of the corresponding stabilized frames (right).

Stabilization minimizes the di�erence in regions

close to the horizon.

http:O�Road3DStabilization. The di�erence

between the �fth and tenth input frames is

shown on the bottom left, and the di�erence

between the corresponding stabilized frames on

the bottom right. The darkness of a spot on

the bottom images is proportional to the dif-

ference of intensity between the corresponding

spots in each frame. Since stabilization has

to compensate for the motion between frames,

the di�erence images can be considered as er-

ror measurements which stabilization attempts

to minimize. In this example, most of the fea-

tures lie on the horizon, so that the horizon is

particularly well stabilized. Errors are bigger

around objects that are closer to the camera

(darker regions), since they have large transla-

tional components which are not compensated

by this method.

The real-time implementation typically detects

and tracks nine features with a maximum fea-

ture displacement of 15 pixels. Under these

settings, the system is able to process approxi-

mately 9.8 frames per second.

Figure 7 compares the mosaic images from the

2D and 3D models. They both use the same

set of 11 feature points for motion estimation,

and the 3D system selects the four points which

best approximates the current rotation estimate

to update its state.



Figure 5: Mosaic from the 2D fast stabilization algorithm

The original sequence is composed of 200 frames

and the dominant motion is left-to-right pan-

ning. To help comparison and visualization,

the reference frame was assumed to be the

100th frame, and appears at the center of the

mosaics. The �rst column shows the 50th,

100th, and 200th frames from top to bottom.

The second column shows the corresponding

mosaic images constructed from the 2D esti-

mates, and the third column shows the corre-

sponding mosaics constructed using the 3D es-

timates. Since the camera calibration is un-

known, we \guessed" the camera FOV to be

3 � 4 degrees. The mosaic from the 2D es-

timates (http:2DMosaic1) does a good job lo-

cally, but the 3Dmosaic (http:3DMosaic1) looks

much more natural, as if it were a panoramic

picture taken using a �sh-eye lens. The original

sequence and the 3D stabilized output can be

seen at http:3DStabilization1.

Figure 8 shows a second comparison between

2D and 3D mosaics. The original sequence

is composed of 150 frames and the dominant

motion is right-to-left panning. The reference

frame was assumed to be the 75th frame, and

appears at the center of the mosaics. The

top row shows the 70th and the last frame of

the sequence, from left to right. The second

row shows the 2D mosaics constructed up to

the corresponding frames in the �rst row, and

the bottom row shows the corresponding mo-

saics using the 3D models and using the same

camera parameters that were used to gener-

ate Figure 7. The original sequence and the

mosaics can be viewed at http:UGVsequence,

http:2DUGVMosaic, and http:3DUGVMosaic.

6 Conclusion

We have presented in this paper a fast elec-

tronic image stabilization and mosaicking sys-

tem based on a two-dimensional feature-based

multi-resolution motion estimation algorithm,

that tracks a small set of features to estimate

the motion of the camera. Stabilization is

achieved by combining all motion from a ref-

erence frame and subtracting this motion from

the current frame. Mosaics are constructed in

real time by directly aligning new frames with

the current mosaic. The system was imple-

mented on a Datacube MaxVideo 200 board

connected to a Themis 10MP. Preliminary tests

using PREDATOR video data demonstrate the

robustness of the system, which is able to pro-

cess 10 frames per second and handle displace-

ments of up to �12 pixels between consecutive

frames.

We have also presented a 3D model-based real-

time stabilization system that estimates the mo-

tion of the camera using an IEKF. Stabilization

is achieved by derotating the input camera se-

quence. Rotations are represented using unit



Figure 7: 2D and 3D mosaics from 200 frames of a panning sequence. The leftmost column shows

the 50th, 100th, and 200th frames from the input sequence. The second and third columns show

the corresponding 2D and 3D mosaics,

quaternions, whose good numerical properties

contribute to the overall performance of the sys-

tem. The system was implemented on the same

platform and it is able to process 128� 120 im-

ages at approximately 10 Hz.
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