
Heatmap Explorer: an interactive gaze data visualization
tool for the evaluation of computer interfaces

Antonio Diaz Tula∗

diaztula@ime.usp.br
Andrew Kurauchi∗

kurauchi@ime.usp.br
Flávio Coutinho†

flcoutinho@usp.br

Carlos Morimoto∗

hitoshi@ime.usp.br

ABSTRACT
Eye gaze is an important source of information to evaluate
computer interfaces. Typically, visualization of gaze data is
performed using heatmaps and gaze scanpaths displayed on
top of images of the interface, enhancing regions that have
attracted the user’s visual attention. Such tools work well
for static interfaces but they are not appropriate to visualize
dynamic interfaces where the object of interaction is always
changing, such as games, web browsing, or even common
applications that change the interface according to the status
of the application. In this paper we introduce an interactive
tool to explore the spatial-temporal distribution of visual at-
tention called Heatmap Explorer (HME). HME allows the
experimenter to control the visualization by selecting temporal
intervals and adjusting filter parameters of the eye movement
classification algorithm. We show results of three typical ap-
plication scenarios and discuss how HME can be an effective
usability evaluation tool.

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous

Author Keywords
Heatmap Explorer; eye gaze visualization; user interface
evaluation; information visualization.

INTRODUCTION
An eye tracker is a device that measures eye movements in
order to determine the point-of-gaze of an individual [6, 12].
Most of the eye trackers used today employ one (or more)
camera(s) to capture images of one’s eye(s). Computer vision
techniques are then applied to detect and track eye features
that reflect eye orientation (such as the pupil or iris center)
and the point-of-gaze is computed by a mapping function
such as a polynomial. The coefficients of the polynomial can
*Institute of Mathematics and Statistics - University of São Paulo
†School of Arts, Sciences and Humanities - University of São Paulo

Figure 1: Left image: a remote eye tracker in general
placed below the computer screen and; Right image: a
head-mounted eye tracker.

be computed using regression from data collected during a
calibration procedure, where the user must look at a set of
known targets. Due to anatomical characteristics of the human
eye, there exist a direct relationship between the orientation of
the eyeball and what is being observed. Thus, the tracking of
any eye feature related to eye orientation allows the estimation
of the point-of-gaze.

An eye tracker device is usually found in either of two types
of configuration: remote or head mounted. Figure 1 shows
commercial eye trackers available for each of these configura-
tions. In a remote eye tracking system the camera is typically
placed below the computer monitor and the point-of-gaze is
computed relative to the computer screen. Remote eye trackers
have the advantage of not requiring any kind of equipment to
be worn or be in direct contact with user.

In head-mounted configurations the camera is normally at-
tached to some kind of glasses (or helmet) that must be worn
by the user, remaining fixed relative to the user’s head, and the
user is allowed to move freely around the environment. Head
mounted eye trackers require a second camera pointed towards
the environment (called scene camera), also fixed to the ap-
paratus worn by the user. This second camera is responsible
for capturing scene images that covers the user’s field of view,
and the computed point-of-gaze is estimated relative to these
scene images. Despite being more invasive when compared to
remote configurations, head mounted eye trackers are portable,
can be used in analysis of daily activity, and estimation of
the point-of-gaze is not restricted to a single plane (computer
screen).

Because there is a strong correlation between the point-of-gaze
and the focus of attention of a person, gaze data can be useful

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 

bear this notice and the full citation on the first page. To copy otherwise, or 
republish, to post on servers or to redistribute to lists, requires prior specific 
permission and/or a fee. Proceedings of IHC'16, Brazilian Symposium on 

Human Factors in Computing Systems. October 04-07, 2016, São Paulo, 

São Paulo, Brazil. Copyright 2016 SBC. ISBN 978-85-7669-346-8 (online). 

10.1145/1235


in a wide range of applications. Duchowski [2] classifies eye
tracking applications into two major categories: interactive
and diagnostic. Interactive applications use eye trackers as
alternative input devices and react according to what a user
observes. Diagnostic applications use data as evidence of the
visual and attentional behavior of an individual to typically
perform some kind of analysis that correlates gaze behavior to
the execution of a task.

A virtual keyboard, drawn on the computer screen, in which
characters are typed as they are gazed by the user is an example
of an interactive application [11]. It also illustrates the poten-
tial of eye tracking as assistive technology to users that are not
able to use conventional input devices. The main challenge
in the development of gaze controlled interfaces, specially if
the goal is to use the gaze as the only input modality, is to
properly distinguish the actual intention of the user’s gaze:
control or observation [8]. Different interaction paradigms for
gaze-based interfaces have been developed and proposed to
deal with this challenge [2]. Another significant challenge is
dealing with the relatively low accuracy of eye trackers (when
compared to traditional pointing devices).

Studies and experiments related to the fields of neuroscience
and psychology are examples of diagnostic applications. Us-
ability evaluation of user interfaces supported by gaze data is
a concrete example of diagnostic application that is directly
related to the Human Computer Interaction (HCI) field. The
design of interactive systems requires many iterations of de-
signing, prototyping, and evaluation of the design before the
system is actually implemented [14], and support of gaze
data during evaluation can speed up this process. Information
about the user’s visual attention during an evaluation experi-
ment is valuable in determining regions of interest, interface
components that are hard to see or find, understanding the
user’s mental model when performing a task, etc. Therefore,
eye tracking data can be used to complement the informa-
tion collected during traditional user experiments in usability
evaluation research.

From the brief description of the two application categories, it
is possible to observe that eye tracking is strongly related to
HCI either as a novel and not so explored input modality or as
a useful tool to analyze user behavior.

The focus of this paper is on gaze data visualization tools for
the evaluation of computer interfaces. Blascheck et al. [1]
present a recent survey on state-of-the-art visualization tech-
niques for eye tracking data and classify them into nine cate-
gories based on properties of the data, including aspects of the
stimuli and the viewer, and on properties of the visualization
technique, such as 2D or 3D scenes. For evaluating interfaces,
heatmaps and scanpaths have been shown to be very useful
in discovering areas of visual interest [15]. Such techniques
are mostly suitable for the visualization of a static scene or
photograph.

In this paper we introduce Heatmap Explorer (HME), an in-
teractive visualization tool of remote and head-mounted eye
tracking data that is suitable for the evaluation of computer
interfaces. Before introduction of our HME application, we

present in the next section a brief review regarding the use
of eye tracking in usability evaluation and visualization of
gaze data in particular. Following it, we introduce our HME
application and then describe experimental results using three
application scenarios where HME could be used to investigate
usability issues.

USABILITY EVALUATION AND VISUALIZATION
Before presentation of related works, let us introduce some
important concepts related to eye movements. In terms of how
gaze data can be interpreted in the context of eye movement
analysis, a fixation consists in a set of point-of-gaze samples
that fall within a certain region during a continuous time frame.
In other words, fixations correspond to the moments when
the eyeball is mostly static so that an object of interest can be
imaged by the retina [3]. A saccade is a fast eye movement that
“jumps” from one fixation region to the next, while a scanpath
is defined by a series fixations and the saccades that connect
each pair of consecutive fixations. Analysis of scanpaths can
be useful to reveal information about a user’s behavior. For
instance, during a search task, the optimum scanpath would
be a straight line towards the desired target and the difference
between the optimum and observed scanpaths can be used as
an indicator of the quality of interface design [5]. Note that
raw gaze data (sequence of all point-of-gaze samples) must be
processed in order to obtain scanpath information.

According to Blascheck et al. [1], two common approaches to
analyse gaze data include statistical analysis of the data or the
use of visualization techniques. While statistical approaches
can be used to obtain quantitative results, visualization allow
analysis in a more exploratory and qualitative way.

A statistical approach typically uses metrics related to eye
movements in order to characterize the user’s behavior. Gold-
berg and Kotval [5], for example, proposes several scanpath
related metrics that can be associated with the effectiveness
of users’ search patterns during interaction. Some of pro-
posed metrics include: scanpath length and duration, convex
hull area of the scanpath, spatial density of area covered by
a scanpath, and transition matrix between areas of interest
(AOIs) over the interface. Raiha et al. [13] argues, however,
that before some metric can be defined or chosen in order to
statistically analyse gaze data, visualization can be important
to understand the characteristics of gaze behavior in a given
context. Hence, the importance of visualization techniques
and tools. Presentation and discussion of about several visual-
ization techniques can be found in the survey by Blascheck et
al. [1] and also in [13], [4], and [15].

The simplest possible form of visualization of eye tracking
data would be to draw the sequence of estimated gaze points
directly over the observed stimulus. Although suitable for
either static or dynamic stimulus, individual point-of-gaze
visualization is not very useful for analysis as little information
is given and changes at a fast rate. Therefore, visualization
techniques that summarize raw gaze data into more meaningful
information are preferred.

Scanpaths and heatmaps are probably the most commonly
used styles of gaze data visualization. In a scanpath visualiza-



tion fixations are normally represented by circles and saccades
as lines connecting the fixation circles. The circles and lines
are drawn over the stimulus used during gaze data acquisition.
Some properties of the circle such as radius, color or opacity
may be changed to indicate the duration of the fixation. De-
spite being useful to illustrate viewing order of the fixation
regions, scanpath visualizations can become confusing if there
is a lot of overlapping between several fixations and saccades,
a problem that is further amplified if scanpaths from multiple
users are displayed.

Heatmaps, also known as attention maps, discard the time
dimension, displaying an aggregation of fixations. Regions
over which lots of fixations occur are usually displayed in hot
colors while regions with little or no fixations are displayed in
cold colors, but other schemes to discriminate the intensity of
fixations may be applied as well. Although temporal informa-
tion is lost, heatmaps are useful to identify regions that attract
more attention. Heatmaps is also a convenient visualization
technique if data from multiple users need to be displayed.

A disadvantage of both scanpath and heatmap visualization is
that they are not suitable for dynamic stimuli, such as videos or
systems whose interface changes as users interact with them.
Regions that draw more user attention at a given time frame,
resulting in a set of fixations, may change substantially over
time, rendering the previously detected fixations obsolete with
respect with the current state of the stimulus. Kurzhals et
al. [10] overcome this limitations by suggesting motion com-
pensated heatmaps as well as a space-time cube visualization.

In addition to the challenges involving visualization over dy-
namic stimuli, Blascheck et al. [1] also point out a general
lack of visualization techniques and tools that allow interactive
analysis of eye tracking data.

HEATMAP EXPLORER
Heatmap Explorer, HME for short, was developed to visualize
user’s gaze behavior on dynamic interfaces, helping interaction
designers to quickly identify design issues. Instead of using a
static image of the interface, HME uses a video recording of
the interface synchronized with gaze data to present a spatial-
temporal representation of the user’s visual attention during
the interaction. It should be noted that a static interface can be
understood as a single frame repeated throughout the whole
interaction, thus HME can also be applied to such interfaces.

In a dynamic interface the visual element focused by the user’s
gaze may not be available anymore after some time. For
example, an icon representing that some data is being loaded
will disappear as the data is loaded. The information that the
user was looking at that specific icon will be out of context
in the new visual state of the interface. For this reason, HME
only displays gaze information within a temporal window
before the current time. The ideal size of the temporal window
depends on the application: highly dynamic interfaces, such
as game interfaces, may require a short temporal window,
while slowly changing interfaces might use longer temporal
windows. For this reason, the length of the temporal window
is defined by the user.

Figure 2: Example of mean image representing the inter-
face being scrolled down.

The gaze information within the temporal window is displayed
and updated as the video is played. The designer can pause the
video at any time to carefully inspect the user’s visual attention
during that particular moment of the interaction. Besides
showing gaze data on the video and on a static frame of the
video, HME also has the option of showing a mean image.
The mean image is a frame composed by the average pixel
for each position for a subset of frames from the temporal
window. The resulting image is a way of representing motion
in the interface with a static image. A subset of frames is
used instead of all the frames in the temporal window to avoid
getting the mean image to be too blurry, also the computation
of the mean image is sped up by doing so. An example of
the user scrolling down a page is shown in Figure 2. With
the combination of the mean image with the gaze data the
designer can make sense of the user’s spatial-temporal visual
attention. For example, the user following the mouse pointer
with their gaze can be represented in a single static image.

Advantages and challenges of head-mounted eye tracker
data
A head-mounted eye tracker can be used to collect both the
eye gaze data and the video of the interface. It not only fa-
cilitates synchronization, but also allows for a wider range
of interfaces and devices to be tested with the same method.
Interaction with large displays, computer monitors, tablets or
smartphones could be analyzed in the same way. A caveat,
considering the current accuracy of eye trackers, the study on
small screens may not yield good results. The magnitude of
the gaze estimation error may be too large compared to the
screen size. The results for small screens may be more reliable
as eye tracking technology develops further.

Using the scene camera to record the interaction gives the
designer more flexibility to test interfaces in a wider range of
devices. This flexibility, however, comes with a price. As the
scene camera is mounted on the head of the user, the screen
will be moving in the recorded video. Even if the user wearing



the head-mounted eye tracker tries to keep their head still,
some involuntary head motion will inevitably occur. Also, the
scene camera often captures more than just the interface. The
surroundings of the surface of interest (such as a computer
monitor) may be an unnecessary visual clutter when exploring
the user interaction data.

Chin rests have been employed with remote eye trackers to
help the user to keep their heads still. However this does not
solve the problem of surrounding visual clutter. Also, it may
cause discomfort to the user and affect their interaction with
the interface.

HME solves both problems by stabilizing the interface image
with computer vision algorithms. The interface is initially
detected and extracted from the image. The extracted interface
is then mapped to a frontal view. This process is repeated for
all frames in the scene video. The result is a video containing
only the interface as viewed from the front, independently of
the position of the user’s head during recording.

The interface of HME is shown in Figure 2. It is composed of
3 main parts: the video window, video controls, and heatmap
controls.

The Video Window
The interface video overlaid with the heatmap is displayed by
the video window. After selecting the directory containing
the interface video and the gaze data, the interaction designer
can visually inspect the user’s gaze data in this window. The
video window updates the visualization in real time as the
designer adjusts the parameters in the video and heatmap
controls. This may facilitate fine tuning the parameters to
highlight the desired information.

Video Controls
The video controls are shown at the bottom of the interface
(Figure 2). The available controls are the play/pause button,
the progress bar, the speed selector, and two checkboxes (on
the right) for toggling on/off the black & white and mean
image options.

The play/pause buttons are the standard controls present in any
modern video player. The progress bar is composed by a large
rectangle that represents the overall video duration and two
slider controls. The rightmost slider shows the current video
frame, similar to most video players. The leftmost slider is
used to define the size of the temporal window. This temporal
window determines the gaze samples that are displayed in
the current video frame. The size of the temporal window
is proportional to the distance between the two sliders. The
farther the distances between the sliders, the larger the number
of gaze samples displayed in the current video frame. This
temporal window also determines the video frames used to
compute the mean image. A small thumbnail is shown close to
both sliders, to give feedback about the initial and final frames
of the temporal window (Figure 2).

The speed selector determines the playback velocity. The
speed value 1.0x is the recorded playback velocity, which is
typically 30 frames per second. The video playback velocity

Figure 3: The interface can be displayed in black and
white to facilitate the visualization of the heatmap infor-
mation.

is slower for values smaller than 1.0x and faster for values
greater than 1.0x.

Visualizing the interface in black and white may be useful to
see the heatmap information more clearly (Figure 3). This
option can be set by selecting the black & white checkbox.
If the mean image checkbox is selected, HME will display
the mean image of the temporal window, which, as explained
above, can be used to visualize motion in the interface.

Heatmap controls
The Heatmap controls are composed of a combobox to select
the visualization mode, a color picker to select the color of
the heatmap visualization mode, and three slidebars to control
different parameters of the visualization, that will be described
next.

Data collection
The data required by HME is composed of the video from
the scene camera and the user’s gaze data acquired by a head-
mounted eye tracker. On the interface the interaction designer
can select the directory containing such data. HME then loads
the video and the estimated gaze data. In case the gaze in-
formation is not synchronized with the video frames, HME
synchronizes the two data streams.

In this version of HME, data collection is
done with the Pupil Eye Tracking software
(https://github.com/pupil-labs/pupil [9]). The
Pupil software has the option to calibrate the eye tracker and
also to define surfaces, such as the computer monitor, in
the scene camera with fiducial markers. While running, the
software estimates the user’s gaze on the scene image and,
if any surface is defined, it estimates also the gaze on that
surface. The gaze samples are composed by the coordinates
of the gaze position on the scene image and a timestamp
to localize it temporally. The recording option of the pupil
software creates a folder with several files, containing



information about the user calibration, gaze estimation on
the scene image and on the surfaces that were defined. It
also records information about the position of the fiducial
markers in the scene image and the homographies [7] that
maps coordinates from the scene image to the surface and
vice-versa.

The steps to make a recording using the Pupil software, that
can be used later with HME, are the following:

1. Place the fiducial markers in the corners of the screen where
the application under evaluation will be running. It can be
a computer screen, a tablet or even a smartphone, among
others. Those markers will facilitate to robustly detect the
screen with low computational cost.

2. Connect the eye tracker cameras to the computer and run
the Pupil software.

3. Adjust the scene camera to cover the entire computer or
mobile screen where the application under evaluation will
run. Adjust also the eye camera so that the user’s pupil is
completely visible.

4. Run the calibration routine of the eye tracker. In case the
computer running the Pupil software is the same running
the interface under evaluation, the calibration will show
several markers on the monitor and the user must look at
those markers. If the interface is running in a different
device, the Pupil software has additional options to perform
calibration, not described here (but can be found in the Pupil
documentation).

5. After calibration, the user should look at the fiducial mark-
ers to verify that the Pupil software correctly estimates the
gaze over the observed marker in the scene image.

6. Press the “Record” button in the Pupil software, and then
proceed to the interface under evaluation to begin the user
task, while data is being recorded in a folder. This folder
can be configured in the Pupil interface.

When HME opens a recording folder, it first loads the gaze
information and synchronizes it with the video frames. A
gaze sample provided by the eye tracker is composed of a
time stamp t, the gaze coordinates (x,y) that correspond to a
coordinate on the screen (determined by the markers), and a
confidence measure c, which indicates how reliable the gaze
data is. For example, c can be zero when some eye feature,
such as the pupil, is not detected during an eye blink.

The video frames of the scene camera contain the applica-
tion screen, but also some other visual, background content,
as shown in Figure 4a. This background is of no interest to
the evaluator, so it must be removed. This is accomplished
by detecting the four fiducial markers in each video frame,
and computing a homography transformation [7] to map the
polygon defined by the markers into the undistorted view of
the computer screen. The resulting image is displayed in the
HME’s video window. The image after detecting the screen
and applying the homography transformation is shown in Fig-
ure 4b. The gaze data on the undistorted image is obtained
by applying the same homography transformation to the gaze
points.

(a) Scene image captured with the scene camera. Observe the fidu-
cial markers placed in the screen corners.

(b) Screen image after the homography transformation. Note that all
background has been removed and the screen image is undistorted.

Figure 4: Computer screen with fiducial markers. The
markers are used to track the screen in the head mounted
eye tracker scene camera.

Implementation details
In this section we provide some implementation details about
the different visualization modes. Visualization modes were
implemented modularly, so new visualizations can be easily
added without modifying the implementation of HME.

Each video frame has a corresponding gaze point, that was
computed while loading the recording folder. At any given
time, HME has a current video frame and a temporal window
size. If the current frame is the i-th video frame and the win-
dow size is k, then HME will consider the gaze information
from the (i− k)-th to the i-th frame to compute the visual-
ization. When the user adjusts the temporal window size by
making it larger or smaller, a greater or fewer number of gaze
samples will be used. The larger the window, the older the
gaze samples will be displayed in the current video frame.

Thus the visualization modes receive a video frame (the i-th
frame and a list of gaze samples) and returns a video frame
overlaid with the gaze visualization. When the user selects the
“mean image” checkbox (Figure 2), HME computes the mean
image with a uniformly distributed subset of the frames in the



temporal window, and passes this mean frame together with
the gaze information to the visualization mode.

Gaze points are displayed as a sum of 2D Gaussians. Each
Gaussian is centered at the (x, y) coordinate of a gaze point,
and has a given σ value that can be configured. The σ value
determines the shape of the Gaussian: small values will result
is a smaller gaze point area visualization, whereas large values
will result in a larger visualization area. Hence, the first step is
to compute the sum of several Gaussians centered at the gaze
samples. It could be interesting for the designer to distinguish
the more recent gaze samples from the older ones, to have
a clearer idea about the user gaze behavior. Hence, each
Gaussian is weighted according to its temporal position in the
window. We used a power distribution to weight the Gaussians,
so those corresponding to more recent gaze samples are given a
higher coefficient than older gaze samples. Figure 5a shows an
example of the Gaussians for 120 gaze samples. The Gaussian
coefficients are weighted by the power curve shown in Figure
5b and clipped to the interval [0, 1].

The next step is to compute the blending layer. This layer
will be blended with the original frame using a α blending
coefficient. The user can configure the value of α to control
the blending: larger values of α will emphasize more the
original image, whereas smaller values will emphasize the
gaze visualization. We defined 3 different visualization modes:

1. Blurring: in this mode the entire image is blurred using a
Gaussian filter. The size of the blur can be configured in
the HME interface. The area observed by the user is shown
without any blur, as shown in Figure 6a.

2. Fogging: in this mode the original image is covered by a
snow or shadow. This effect is controlled by a parameter
that can be configured in the HME interface: higher values
produce a snow effect, whilst smaller values produce a
shadow effect. The area observed by the user, defined by
the Gaussian matrix, is shown without any fog or shadow
effect (as shown in Figure 6b).

3. Heatmap: this mode shows the original image, with the
area observed by the user filled with a given color. An
example of this visualization is shown in Figure 6c. The user
can change the color used to display the gaze information,
and also to control the transparency of both the original
image and the heatmap, and also the blending coefficient
between the two layers (i.e. emphasize more the heatmap
or the information behind the heatmap).

EXPERIMENTAL RESULTS
To exemplify how HME can be useful for the evaluation of
user interfaces, in this section we show results from a short
experiment using three different application scenarios: game
playing, web browsing, and a desktop application.

The temporal dimension is represented by the video playback.
As we can only present static images of the interface in the
figures the temporal dimension is not represented. To interpret
how the gaze of the user behaved on the interface it would be
necessary to watch the video playing and not only the static

images shown in this paper. Considering this limitation in the
report, we present the results.

Evaluation of Graphical User Interfaces
In a typical user experiment to evaluate a Graphical User
Interface (GUI), the user is given a task to be performed. The
evaluators try to infer the user’s mental model, which parts of
the interface are easy to use and which are not, by observing
their behavior.

To demonstrate how HME can help the evaluation of GUIs,
we will use the OpenOffice suite, in particular, the creation of
a presentation using OpenOffice Impress.

The task given to the user was to create a slide with a title
in bold. Figure 7 shows the visualization of the interaction
using blurring, fogging, and heatmap. During the time window
shown in the figure the user was trying to change the title style
to bold.

By observing the behavior of the user’s visual focus we can
learn if the user’s mental model is correct, i.e., if s/he is looking
at the correct regions and selecting the correct actions required
to accomplish the given task. In this example, the designer
can evaluate if the user is able to change the title to bold.
By observing the visualization window shown by HME in
Figure 7, it can be inferred that the user fixated at the beginning
and at the end of the text (likely to confirm that it was correctly
selected), and then looked at the tool bar to find the bold option.
The larger fixation area corresponds precisely to the area where
the bold option is located in the tool bar. Hence the user found
the bold button without the need to visually search another
parts of the interface.

This simple example shows how HME can be an effective
tool to evaluate GUIs, helping developers to quickly identify
problems with the graphical design.

Web Browsing
Web pages can present very different behaviors, from simple,
mostly static content pages such as Wikipedia, to interactive
forms such as Google Docs and Facebook, and very interactive
and dynamic online games. Different than just evaluating a
particular GUI, the design of web pages might require its
content to be available in different platforms, such as mobile
phones, tablets, and desktop computers.

Because HME is able to process gaze data from remote and
head-mounted eye trackers, the user performance when brows-
ing a web page using different platforms can be analyzed using
the same visualization tool.

Figure 6 shows the visualization of gaze data of a user when
browsing the web page of the XV Simpósio Brasileiro sobre
Fatores Humanos em Sistemas Computacionais - IHC’16, us-
ing blurring, fogging, and heatmap. During the time window
shown in the figure the user was skimming through the main
text area of the call for papers. Observe that it is clear that the
user is just browsing the titles and not reading the text.

By observing the behavior of the user’s visual focus we can
learn about the parts of the interface, in different platforms,
that mostly attract the user’s attention. The lack of attention in



(a) Sum of Gaussians corresponding to 120 gaze samples. Coeffi-
cients are in the range [0, 1].

0 20 40 60 80 100 120
0.0

0.2

0.4

0.6

0.8

1.0

(b) Power curve used to weight the Gaussians, so Gaussians corre-
sponding to more recent gaze samples have higher coefficients.

(c) Heatmap layer computed from the Gaussians matrix. (d) Result of blending the screen image with the blending layer using
a α coefficient for the blending process.

Figure 5: Implementation details for the visualization modes.

certain parts can indicate lack of interest or problems in the
visual design of the web page.

Game Playing
The observation of the user’s visual focus of attention in games
is particularly challenging due to the multitude of possible plat-
forms but also due to the dynamics of the interface required
by the game, such as real-time control of virtual characters
or an evolving board game. To demonstrate the use of HME
for evaluating user performance during game playing we will
show results of a user experiment for the game Minesweeper.
Minesweeper is a classic puzzle game that became very pop-
ular because it was once distributed as part of the Microsoft
Windows operating system. The objective of the game is to
clear a rectangular grid where each position might contain
a hidden mine, without detonating any mine. Initially, the
contents of all grid positions are unknown to the player. The
player must select one at random, and then the computer re-
veals the content of the selected grid position. If a mine is

revealed, the player loses the game. Otherwise, a digit cor-
responding to the number of mines around that position is
revealed and adjacent positions with zero mines surrounding
them are automatically revealed.

Figure 8 shows the visualization using blurring, fogging, and
heatmap. The difference in the shapes of each visualization
is due to the selection of slightly different time instants and
temporal windows. By observing the behavior of the user’s
visual focus we can learn about the user’s strategy and explain
possible errors. For example, Figure 8 shows that the user
looks at the edges of the board with unknown content and is
particularly interested in grid positions with high numbers,
the grid with value ‘3’ in this case. The visual focus on the
positions with high value is an indication of high cognitive load
due to the importance of the value to avoid the selection of an
adjacent grid position with a mine. Therefore, gaze data can be
used to identify regions of interest and that demanded higher
cognitive load. When the user selects a position adjacent to
high values without displaying the required cognitive load,



(a) Blurring (b) Fogging (c) Heatmap

Figure 6: Visualization modes available in HME. Experimental results showing the gaze behavior when browsing a web
page.

(a) Blurring (b) Fogging (c) Heatmap

Figure 7: Experimental results showing the user’s gaze behavior during an experiment to evaluate the usability of a
graphical user interface.

(a) Blurring (b) Fogging (c) Heatmap

Figure 8: Experimental results showing the gaze behavior during a Minesweeping game.

this might be an indication of the level of expertise of the user
or the level of interest or attention of the user.

CONCLUSION
In this paper we have introduced Heatmap Explorer (HME),
an interactive visualization tool for off-line evaluation and
exploration of user visual behavior during the use of computer
interfaces. Gaze information recorded during an user exper-
iment using a remote or head-mounted eye tracker is loaded

into the HME, that combines the video of the experiment with
the gaze data and provides 4 different visualization modes:
video with heatmaps, user visual focus with fog background,
user visual focus with dark background, and user visual focus
with blurred background. Most applications available for visu-
alization of gaze data are limited to static images. HME allows
the user to define temporal regions where relevant interface
events can be better analysed. HME also allows the user to
visualize the gaze data over a mean image computed by sub-



sampling the video frames contained in the temporal region.
This mode allows the user to visualize temporal information
on a static mean image, for example, to check if the user’s
visual focus was over a moving object. We have presented
experimental results using three application scenarios to show
the effectiveness of HME: game playing, web browsing, and
graphical user interfaces. The main contributions of our paper
are: the design and implementation of HME, the development
of a video stabilization mode to be used with data collected
with head-mounted eye trackers, the visualization of gaze data
on an temporally averaged image, and the definition of ap-
plication scenarios where HME can be used to improve the
analysis of user experiments.

A possible extension of this work would be showing multiple
surfaces. For example, if the user has access to a printed
help material the gaze information could be shown in both
the screen (the main surface) and in the printed material (the
secondary surface). Another possible extension is to allow
the creation of tags in the video. Such tags could be used
both to more easily identify key frames in the video and to set
different temporal window lengths depending on how dynamic
the interface is at that moment.

HME will be available as an open source software after the
publication of this paper.

Acknoledgements
The authors would like to thank São Paulo Research Founda-
tion (FAPESP), grants 2011/00267-1 and 2013/06791-0, for
the financial support.

REFERENCES
1. T. Blascheck, K. Kurzhals, M. Raschke, M. Burch, D.

Weiskopf, and T. Ertl. 2014. State-of-the-art of
visualization for eye tracking data. In Proceedings of
EuroVis, Vol. 2014.

2. Andrew Duchowski. 2002. A breadth-first survey of
eye-tracking applications. Behavior research methods,
instruments, computers 34, 4 (2002), 455.

3. Andrew T. Duchowski. 2007. Eye Tracking Methodology:
Theory and Practice. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA.

4. Andrew T. Duchowski, Margaux M. Price, Miriah Meyer,
and Pilar Orero. 2012. Aggregate Gaze Visualization with
Real-time Heatmaps. In Proceedings of the Symposium
on Eye Tracking Research and Applications (ETRA ’12).
ACM, New York, NY, USA, 13–20. DOI:
http://dx.doi.org/10.1145/2168556.2168558

5. Joseph H Goldberg and Xerxes P Kotval. 1999. Computer
interface evaluation using eye movements: methods and
constructs. International Journal of Industrial
Ergonomics 24, 6 (1999), 631 – 645. DOI:
http://dx.doi.org/10.1016/S0169-8141(98)00068-7

6. Dan Witzner Hansen and Qiang Ji. 2010. In the Eye of the
Beholder: A Survey of Models for Eyes and Gaze. IEEE
Trans. Pattern Anal. Mach. Intell. 32, 3 (March 2010),
478–500. DOI:http://dx.doi.org/10.1109/TPAMI.2009.30

7. Richard Hartley and Andrew Zisserman. 2003. Multiple
View Geometry in Computer Vision (2 ed.). Cambridge
University Press, New York, NY, USA.

8. Robert J. K. Jacob. 1991. The Use of Eye Movements in
Human-computer Interaction Techniques: What You
Look at is What You Get. ACM Trans. Inf. Syst. 9, 2
(April 1991), 152–169. DOI:
http://dx.doi.org/10.1145/123078.128728

9. Moritz Kassner, William Patera, and Andreas Bulling.
2014. Pupil: An Open Source Platform for Pervasive Eye
Tracking and Mobile Gaze-based Interaction. (April
2014). http://arxiv.org/abs/1405.0006

10. K. Kurzhals and D. Weiskopf. 2013. Space-Time Visual
Analytics of Eye-Tracking Data for Dynamic Stimuli.
IEEE Transactions on Visualization and Computer
Graphics 19, 12 (Dec 2013), 2129–2138. DOI:
http://dx.doi.org/10.1109/TVCG.2013.194

11. Paivi Majaranta and Kari Raiha. 2002. Twenty years of
eye typing: systems and design issues. In Proceedings of
Eye Tracking Research & Applications, ETRA 2002.
ACM Press, New Orleans, LA, 15–22.

12. C.H. Morimoto and M.R.M. Mimica. 2005. Eye gaze
tracking techniques for interactive applications. Computer
Vision and Image Understanding 98, 1 (2005), 4–24.

13. Kari-Jouko Räihä, Anne Aula, Päivi Majaranta, Harri
Rantala, and Kimmo Koivunen. 2005. Static Visualization
of Temporal Eye-Tracking Data. Springer Berlin
Heidelberg, Berlin, Heidelberg, 946–949. DOI:
http://dx.doi.org/10.1007/11555261_76

14. Yvonne Rogers, Helen Sharp, and Jenny Preece. 2014.
Interaction Design: Beyond Human - Computer
Interaction (4th ed.). Wiley Publishing.

15. O Špakov and Darius Miniotas. 2015. Visualization of
eye gaze data using heat maps. Elektronika ir
Elektrotechnika 74, 2 (2015), 55–58.

http://dx.doi.org/10.1145/2168556.2168558
http://dx.doi.org/10.1016/S0169-8141(98)00068-7
http://dx.doi.org/10.1109/TPAMI.2009.30
http://dx.doi.org/10.1145/123078.128728
http://arxiv.org/abs/1405.0006
http://dx.doi.org/10.1109/TVCG.2013.194
http://dx.doi.org/10.1007/11555261_76

	Introduction
	Usability Evaluation and Visualization
	Heatmap Explorer
	Advantages and challenges of head-mounted eye tracker data
	The Video Window
	Video Controls
	Heatmap controls
	Data collection
	Implementation details

	Experimental Results
	Evaluation of Graphical User Interfaces
	Web Browsing
	Game Playing

	Conclusion
	References 



