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Abstract Eye tracking (ET) for gaze interaction in

wearable computing imposes harder constraints on com-

putational efficiency and illumination conditions than

remote ET. In this paper we present xSDL, an extended

temporal support computer vision algorithm for accu-

rate, robust, and efficient pupil detection and gaze es-

timation. The robustness and efficiency of xSDL partly

come from the use of stroboscopic differential lighting

(SDL), an extension of the differential lighting pupil de-

tection technique developed in the 90’s. Due to the er-

ratic behavior of eye movements, traditional computer

vision tracking techniques (such as Kalman Filters) do

not perform well, so most ET techniques simply de-

tect some eye feature (such as the pupil center) at ev-

ery frame. Extended temporal support uses keyframes

selected during eye fixations and a simple translation
model of the pupil to further improve the computa-

tional performance of SDL. A prototype composed of

two independent acquisition systems was developed to

evaluate the performance of xSDL and other four state-

of-the-art eye tracking techniques under similar condi-

tions. Our results show that xSDL outperforms those 4

algorithms, both in speed (up to 500 Hz using 240 line

frames) and accuracy, using a modest platform compat-

ible with wearable computers.
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1 Introduction

Eye trackers are devices that can estimate the point-of-

gaze on a computer screen [27] or in the scene in front

of the user [19]. Such devices are commonly used in

usability studies [16], marketing research [22,29], med-

ical diagnosis [20,32], communication for people with

disabilities [4], psychological and psychophysical stud-

ies [5], and virtual reality [31,33].

Current eye tracking systems are mostly feature-

based [13], i.e., they use one or more video cameras

to detect and track the eye features and estimate the

point of gaze on a planar surface (typically the com-

puter screen). Most methods detect and track the iris

or the pupil center and use active near infrared (NIR)

illumination to improve the tracking performance. The

use of NIR light is also desirable because it creates a

corneal reflection that can be used as a reference point

for gaze estimation [27].

The point of gaze can be estimated by a function

that maps eye features (such as the pupil center) onto

the observed surface. For example, a second order poly-

nomial can be used where the coefficients can be com-

puted using regression techniques with corresponding

eye features and gaze positions obtained from a cali-

bration procedure. Detecting eye features, such as the

pupil or iris, in a video frame can be challenging due to

noise, low image resolution, and motion blur.

When the eye is illuminated using a NIR light source

placed away from the camera optical axis (off-axis), the

pupil appears dark in the camera image. This facilitates

the segmentation and contour detection of pupils within

light-color irises, but the contrast between the pupil and

iris is low for people with darker eyes. Segmentation

and tracking of the iris or iris contour (also known as
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limbus tracking) is also possible but it is more likely to

be affected by occlusions of the eyelids and lashes.

Differential lighting (DL) [8,25] was introduced to

improve the robustness of pupil detection methods. DL

relies on two NIR illuminators. One is placed very close

to the camera optical axis (on-axis), and one off-axis.

The on-axis illuminator generates bright-pupil images

because the camera is able to capture the light re-

flected from the back of the eye. DL alternates the

off and on-axis illumination, producing a sequence of

dark and bright-pupil images. By subtracting two con-

secutive frames (one dark and one bright), the overlap

between the dark and bright pupils can be easily seg-

mented as regions of high contrast.

Despite its advantages, DL requires camera synchro-

nization with the NIR light sources to produce the se-

quence of dark and bright-pupil images. Figure 1 de-

picts such arrangement. Unfortunately most low-cost

consumer cameras today do not provide a synchroniza-

tion output. This is particularly true for digital web

cameras used with computers. This might be one of the

reasons why current low-cost eye trackers built with

off-the-shelf web cameras use a single off-axis NIR illu-

mination to detect and track the pupil [21,10,11,35].

In this paper, we present a high-performance, low-

cost, stroboscopic differential lighting eye tracking tech-

nique with extended temporal support (xSDL). Our

technique can be used with virtually any digital camera,

and was particularly designed to be used with cameras

without external synchronization. The dual NIR illumi-

nators are synchronized by software.

The remaining of this paper is organized as follows.

Section 2 presents the basic differential lighting tech-

nique developed for analog cameras. Section 3 describes

how the use of stroboscopic lighting allows DL to be

used with digital cameras without external synchro-

nization output. In Section 4 we introduce the extended

temporal support algorithm to improve the overall per-

formance of SDL. Section 5 presents the evaluation of

xSDL and its comparison with state-of-the-art algo-

rithms in a typical gaze estimation experiment. Section

6 presents the results of the xSDL evaluation. In Sec-

tion 7 we present a discussion about xSDL, and finally

Section 8 concludes the paper.

2 Pupil Detection Using Differential Lighting

The differential lighting (DL) technique introduced by

Ebisawa and Satoh [8] was developed as a robust pupil

detection method to improve the performance of non-

verbal communication tools for people with disabilities.

In [7], Ebisawa shows several refinements to the basic

DL such as noise removal using morphological opera-

tions and pupil brightness control.

Morimoto et al. [24] describe a pupil-corneal-reflection

(PCR) gaze estimation technique using DL and a sec-

ond order polynomial for mapping the PCR vector to

target coordinates. Their system used an analog 30 Hz

NTSC camera with external synchronization output.

An external electronic circuitry was used to synchronize

the even and odd frames of one interlaced camera image

to the on and off-axis lights. Because each interlaced im-

age contained a dark and bright-pupil image, the pupil

could be detected at 60 fields per second (where the

field has half the resolution of an image frame after

de-interlacing). In [24] the pupil was computed as the

center of mass of the blob detected from the differential

image. Hennessey et al. [15] proposed, as a further DL

refinement, the computation of the actual pupil contour

in the bright or dark-pupil images, since the differential

image only provides the overlap region when the eye is

moving.

Morimoto and Flickner [23] also use DL to detect

the eyes in a wider area to detect and track multiple

faces. Ji and Yang [17] describe a gaze and face pose

tracking system for monitoring driver’s vigilance using

DL. Due to the simplicity and good overall performance

of the method, several other refinements and applica-

tions have been suggested in the literature [14,18,36].

DL was developed in the 90’s to be used with analog

cameras and low performance computers – low perfor-

mance when compared to regular desktop computers to-

day. As computers got more powerful and cameras more

affordable and easier to setup and use (digital plug-

and-play cameras), other pupil detection and tracking

methods that do not require custom external hardware

and use only visible light, such as [12], are preferred in

practice despite DL’s good performance. Nonetheless,

as computational power continues to increase and hard-

ware continues to reduce in size, the rise of technolo-

gies such as mobile, ubiquitous, and wearable comput-

ing demands more restrictive requirements for energy

consumption and computational efficiency. Because an

eye tracker can be used as a wearable input device that

is always on, DL might become a stronger alternative

because the active lighting allows the method to work

under different lighting conditions, it is computation-

ally very efficient, and its simplicity allows the method

to be implemented in hardware [1].

Despite its advantages, DL using analog cameras re-

quires the external lighting to be synchronized with the

camera’s odd and even fields [7,24]. A modern alterna-

tive would be the use of syncing-capable digital cameras

with global-shutter, where all pixels are exposed within

the same time window and a signal is generated to allow
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Fig. 1 Block diagram depicting the main components of the DL technique. The camera has a synchronization output which
is used to trigger the light sources.

synchronization. While this option is attractive, such

high-end cameras are still expensive. Most modern dig-

ital cameras (such as external webcams and cameras

used in notebooks, tablets, and mobile phones) employ

rolling shutters, i.e., each line of the frame is exposed to

light at slightly different times. This sliding window cre-

ates image artifacts when fast moving objects, such as

the eye, are present in the scene being captured. Also,

because DL uses two light sources, it is possible that

during an image scan part of the image is illuminated

by one light and the rest of the image is illuminated by

the other light source, as illustrated in Figure 2.

To reduce these artifacts, we have proposed in [2]

the use of stroboscopic differential lighting (SDL) con-

trolled by software. This technique is described next.

3 Stroboscopic Differential Lighting (SDL)

In [2] we have described how stroboscopic lighting can

be synchronized with rolling-shutter digital cameras.

The idea is to fire one very short light pulse for ev-

ery frame. The use of short light pulses allows low-end

cameras to capture very sharp images (reduces motion

blur) and reduces artifacts due to the rolling-shutter.

Nonetheless, when the lighting is not correctly synchro-

nized with the camera frames other artifacts such as

those shown in Figure 2 are created. The dark stripes

correspond to sensor lines that were not lit by the light

pulses.

Our method exploits the dark stripe artifacts to syn-

chronize the lighting. In [2] we presented the computer

vision algorithms to detect the stripe and to compute its

spatial and temporal properties that are used to adjust

the lighting parameters to conceal the stripes within

hidden image lines. The basic idea is to first compute

the position of the stripe by computing a vertical in-

tegral image, i.e., a column vector where each element

corresponds to the integral of an image line. Once the

stripe position is detected, the stroboscopic pulses are

modulated to shift the stripe towards the hidden lines

of the camera sensor.

One limitation of the method described in [2] was

that it relied on the knowledge of sensor parameters.

a) b)

Fig. 2 Dark (a) and bright (b) pupil images with dark stripes
created when the stroboscopic lights are not correctly syn-
chronized with the camera frames. The stripes correspond to
sensor lines that were not lit by the light pulses.

Because this information is not always available, the

parameters had to be manually adjusted for some cam-

era configurations used in the experiments. In [3] we

presented a new solution that dynamically estimates

the camera sensor exposure and number of lines from

the dark stripe artifacts. Starting with a coarse estima-

tion of the sensor parameters, the position and height of

the stripe is computed using the vertical integral image.

The stripe parameters are then used to refine the esti-

mation of the sensor parameters before the adjustment
of the firing of the illuminators, until a clear picture

(without artifacts) is obtained.

While in previous papers we have focused on the

SDL hardware and synchronization issues, the focus of

this paper is on the computer vision software for ac-

curate detection of eye features for gaze estimation. In

the following subsections we describe how the pupil and

corneal-reflections are detected using SDL.

3.1 Segmentation of pupil candidates

With the camera and light sources synchronized, the

difference between two consecutive frames containing

bright and dark-pupil images, can be used to detect

pupil candidates by thresholding [26] as seen in Fig-

ure 3.

The resulting dominant blob most likely corresponds

to the overlap pupil region. Instead of using a fixed

threshold value to compute the blob, we initially use
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a) b) c) d)

Fig. 3 Pupil candidate segmentation. a) dark pupil image;
b) bright pupil image; c) Difference between bright and dark
pupil images; d) Difference image thresholded.

an adaptive threshold technique similar to the proce-

dure described in [21] to detect corneal reflections. The

threshold is computed using (1) where H is the inverted

cumulative histogram of the difference image and A is a

geometric constraint used to eliminate noise, denoting

the minimum expected pupil area in pixels.

threshold = argmin
i
|Hi −A| (1)

H is computed by (2), where i and j are bin num-

bers, hj is the number of pixels that falls into the inten-

sity interval defined by bin j, and k is the total number

of bins.

Hi =

k−1∑
j=i

hj , i = 0..k − 1 (2)

The algorithm varies the threshold from high to low

values in large steps, speeding up the convergence. A

new threshold is computed as the intensity which pro-

vides enough pixels to fill up an ellipse that encloses

the contour of the largest area traced from the bina-

rized image in the current iteration. We calculate the

new threshold using (1) with A as the ellipse area.

Assuming that the pupil region corresponds to the

largest elliptical blob, its area increases as the thresh-

old is lowered. The search stops when the ratio between

the largest blob and the remaining smaller blobs starts

to decrease [21]. The threshold that maximizes the area

A of the overlap region is selected. Additional geomet-

ric constraints regarding the expected size, shape, and

position of the pupil are used to filter false candidates.

Once this threshold is computed its value is used in

future detections. The threshold is recomputed again

only after long periods of miss or false pupil detections.

3.2 Segmenation of the corneal reflections

A similar adaptive threshold procedure based on the in-

verted cumulative histogram method is used to segment

the corneal reflections (CRs) generated by the IR light

sources. The reflections appear as bright small spots in

the pupil image and they are commonly used to im-

prove gaze estimation results [27]. Quite often they are

within the pupil region and create artifacts in the dif-

ference images as seen in Figure 3.

Geometric constraints such as the expected size and

position of the CRs are used to filter some of the false

positive candidates. Unlike the pupil though, other can-

didates might remain, particularly due to the tear layer

near the eyelids, and near eyelashes.

To improve the robustness of the CR detection, each

CR candidate g is modeled as a 5-tuple (lg, cg, rg, dg, r̂g),

where lg is the number of iterations in which g is present;

cg is the coordinate of the reflection center, rg is the

radius of the enclosing circle; dg is the distance to the

pupil center; and r̂g is the ratio between the number of

segmented pixels within the circumference with radius

rg and the number of pixels within the circumference

with radius rg+1, both centered at cg. At each iteration

of the adaptive threshold method, an ordered list of the

corneal reflection candidates is stored. The candidates

are sorted according to a quality function Q defined as

Q(g) = ((lg + 1) · rg · (1.0/(dg + 0.1)) · r̂g), (3)

Therefore, the best quality CRs are those that are

brighter (lg + 1), larger (rg, within an expected range),

closer to the pupil center (1.0/(dg + 0.1)), and shaped

like a circumference (r̂g). The computation of the thresh-

old stops when a number of appropriate CRs are de-

tected and are stable between two iterations.

The position of the center (xc, yc) of one CR is es-
timated as the normalized center of mass that weights

the pixels according to their intensities as follows:

(xc, yc) =
1

N

N∑
i=1

(e%·(I(xi,yi)−1) · (xi, yi)) (4)

where N is the total number of segmented pixels that

belong to the CR, the function I(.) returns the pixel

intensity normalized to [0, 1] and % is a weighting con-

stant. Higher values of % are used to select the center

closer to the brightest pixel while with small values all

pixels are considered. Two weighting constant values

are used, one for the bright pupil images and one for

the dark pupil images. The weighting was introduced to

reduce biasing on the center estimation when the CR

surrounding pixels are bright. (4) assumes that the CR

intensity profile follows a symmetric bivariate Gaussian

distribution such as the one described in [21].
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Fig. 4 Rays used to refine the edges of a bright pupil.

3.3 Pupil refinement with sub-pixel accuracy

Tough the pupil overlap region can be used for gaze

estimation [24], more accurate results can be achieved

using the true pupil contour. Starting from the pupil

candidate obtained from thresholding, its contour can

be described by an ellipse (eo), defined by the 4-tuple

(a,b, c, θ̂), where a and b are the major and minor

axes, c = (cx, cy) is the ellipse center, and θ̂ is the rota-

tion angle. The pupil refinement consists of projecting

a number of rays Rk, k = 1...m outwards from the pupil

center to detect the actual pupil edges in the current

frame, similar to [28], as seen in Figure 4. The length

of each ray is proportional to the length of the pupil

principal axis. The edge pixels with subpixel accuracy

are then used to estimate the ellipse parameters.

Observe in Figure 4 that rays intersecting the CRs

are discarded when they are detected within the pupil

region to avoid further interference in the computation

of the pupil contour.

Each ray profile is transformed to a column vector as

seen in Figure 5 using bilinear interpolation. On each

column (ray profile), a one dimensional convolutional

Gaussian derivative edge detector is applied. Though

the peak response in general corresponds to the pupil-

iris boundary, other strong responses might be caused

by eyelashes and scene reflections. To lower the effect

of such noisy rays, a normalized weight is used to sort

the rays as follows:

Wk = max
j=1...|R|

(
R∗k(j)∑|R|
i=1R

∗
k(i)

)
(5)

where R∗k(j) denotes the edge response at position j of

ray Rk, and Wk the weight attributed to ray Rk. Typi-

cally, 10% of rays with the lowest weight are discarded.

For the remaining rays, subpixel accuracy is ob-

tained by interpolating the values around the pixel with

strongest edge response similar to [6]. Figure 5 shows

the intensity profiles of the rays computed from a bright

pupil image and the corresponding strongest responses

along with the results of the Gaussian interpolation.
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Fig. 5 The intensity profiles of rays computed from a bright
pupil image. (Top) Rays resulting from bilinear interpolation
of the pupil image along the ray trajectory. (Bottom) Results
of the edge detector convolution along each ray. The red line
shows the strongest filter response location, while the green
represents the Gaussian estimator result.

The efficacy of removing outliers by discarding pupil-

iris boundary candidates associated to the lowest weighted

ray profiles depend on the chosen cut-off value. There-

fore, before assuming subpixel locations on the remain-

ing rays correspond to the actual pupil-iris boundary, a

second filtering is performed, this time based on local

statistics. This filter is intended to remove remaining

outliers based on the spatial distribution of candidate

positions. Consider the array C containing the subpixel

locations of the peak edge responses of each ray, sorted

by the associated angle of projection. Each position in

this array is a candidate to be part of the pupil con-

tour and, therefore, we expect the values in C to vary

smoothly. To remove outliers, we compute an array (σL)

with the local standard deviation (LSD). Each value in

σL contains the standard deviation (SD) of a neighbor-

hood around the corresponding value in C (the neigh-

borhood is typically of size 7). Outliers are expected to

have high LSD, which are detected by thresholding as

the candidates with values higher than the mean plus

the SD over all LSD, i.e. threshold = µσL
+ σσL

. An

ellipse is fitted to the remaining candidates based on

the direct least squares method [9].

Figure 6 shows a pupil partially covered by eyelashes

and the candidates filtered by the threshold described.

When the ellipse is larger or smaller than the ex-

pected size and shape of a pupil or the ellipse is not

completely contained in the image, the refinement pro-

cess stops and reports that no pupil was detected in the

frame.
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Fig. 6 Top: intensity profile of each ray extracted from a
dark pupil image and corresponding convolutions. Bottom:
the result of filtering using local statistics.

4 Extended Temporal Support

Basic eye movements can be classified into fixations,

saccades, and smooth pursuits [30]. Because our vision

is foveated, during a fixation the target of interest must

be projected onto the fovea to be perceived at the high-

est resolution. The fovea only covers a small region of

the retina, so the eye must stay somewhat stable during

fixations. To perceive all the details of large objects, the

eye must fixate on several locations. A saccade is a fast

ballistic eye movement that moves the eye to different

locations. Pursuits are eye movements used to foveate

on moving objects, such as a flying bird.

Differential lighting works better when the overlap

between the bright and dark pupil images is large. Dur-

ing saccades the overlap region between two consecu-

tive frames may become quite small for slow frame-

rate cameras. Fast frame-rate cameras are used when

saccades are required to be tracked. Nonetheless, slow

frame-rate cameras are still adequate when tracking

saccades are not important, e.g., for most gaze inter-

action applications.

Independently of the camera frame-rate, an eye tracker

based on DL typically detects the pupil at every frame,

considering the overlap from the previous frame. Though

Fig. 7 xTS pupil position estimation process using a bright
pupil (BP) as keyframe. A dark pupil (DP) center C is com-
puted as a function of the keyframe pupil center Ck and the
blob ellipse center B.

the pupil position could be predicted during pursuits by

regular computer vision tracking algorithms, the erratic

behavior of the eye during saccades makes pupil posi-

tions hard to predict.

Instead of using consecutive frames to estimate the

pupil positions, our extended temporal support (xTS)

technique computes most pupil displacements from se-

lected keyframes, speeding up the computation of the

new pupil position.

The basic idea is shown in Figure 7. Consider as

keyframe a bright-pupil (BP) image. When any dark-

pupil (DP) image with sufficient overlap is grabbed, the

new pupil position C can be estimated as a function of

the position of the pupil CK in the keyframe and the

center B of the overlap blob, computed as the center

of mass of the blob. Assuming that BP and DP are

about the same size, C can be computed as

C = B + (B − CK) (6)

The xTS algorithm maintains both a dark and a

bright pupil keyframes. The algorithm for pupil track-

ing using extended temporal support with SDL (xSDL)

uses those keyframes, whenever they are available, to

compute the overlap region from the difference image

of the most current frame and its appropriate keyframe

(dark or bright). When the overlap is significant (typ-

ically, the minimum overlap width is set to be at least

half the length of the keyframe’s pupil minor axis),

the new pupil center is computed using (6). Otherwise,

xSDL tries to detect the pupil in the current frame us-

ing the previous frame. If successful, the new frame is

considered as a new keyframe (dark or bright). In case

no pupil is detected and no keyframe is available, the

algorithm continues to detect pupils using consecutive

frames until keyframes are once again available. Long

periods without any pupil being detected is possible

during blinks for example.
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5 xSDL Empirical Evaluation

We compare the performance of xSDL with the fol-

lowing 4 eye tracking algorithms: Starburst [21], Ex-

CuSe [10], ElSe [11], and the method proposed by Świrski

et al. [35].

Li and Parkhurst [21] introduced Starburst, a hybrid

method that integrates feature-based and model-based

approaches to detect the pupil. Starting from a point

within the pupil, rays are projected radially to detect

pupil-iris boundary points, i.e. where the derivative is

larger than a threshold. Those feature points are used

to fit an ellipse using RANSAC. The process is repeated

starting at each feature point and projecting rays on the

opposite direction. To reduce possible bias from the se-

lected initial point, the process is iterated replacing the

start point by the average location of all feature points

until convergence, i.e. the averaged center differs less

than a given threshold from the starting point location.

An ellipse is fitted to the feature points using RANSAC,

followed by an image-aware model-based optimization

used to improve the fitting. The algorithm also finds

the CR using adaptive thresholding and remove it us-

ing interpolation.

ExCuSe (Exclusive Curve Selector), developed by

Fuhl et al. [10], is based on edge filtering and oriented

histograms calculated via the Angular Integral Projec-

tion (AIP) function. The method follows different pro-

cessing flows depending on the normalized image his-

togram. When a bright peak is detected, the pupil is

estimated using an edge-filtering approach. The edge-

filtering comprehends several steps applied to the Canny-

edge image. The first step discards single pixels, small
rectangles, and straight lines. The next step selects the

curve that most likely encloses the pupil (the darkest

area). Finally, an ellipse is fitted using all points in the

selected curve with a direct least-squares method. In

case a peak is not detected in the normalized image

histogram, a coarse pupil position is estimated using

AIP functions on a thresholded image followed by a re-

finement step. Four AIP are computed 45°apart, and

the pupil position is assumed to lie in the intersection

of the strongest function responses. The pupil center

is then refined by ellipse estimation similar to the one

employed by the Starburst method [21].

ElSe (Ellipse Selector), from Fuhl et al. [11], is also

based on edge filtering. After Canny-edge filtering, edges

are filtered out (using edge thinning followed by edge

straightening) and separated so that every edge has el-

liptical shape. The next step selects the best ellipse fit-

ted to the edges, according to their area, shape, and

intensity ratio between the inside and outside area. In

case no ellipse is found, (e.g. due to motion blur), a

coarse estimation of the pupil position is computed us-

ing convolution in the downscaled image, followed by

a refinement step. As this second part of the method

always computes an ellipse, a validation is performed

as a last step to avoid returning a pupil position for a

closed eye.

The last method used in the evaluation is the one

proposed by Świrski et al [35]. The method uses a Haar-

like feature detector to initially find a rough estimation

of the pupil location. The intensity histogram of a re-

gion around the coarse position is clustered using k-

means to refine the pupil center. Finally, the algorithm

estimates the pupil contour with an image-augmented

RANSAC ellipse fitting. Robustness and accuracy are

improved by employing a support function that weights

inliers according to their gradient direction and mag-

nitude, preferring sets of points which agree with the

ellipse gradient.

All these algorithms have a C or C++ source code

available for download. The Starburst implementation

used is available online [21] in both C and Matlab ver-

sions. The C version lacks the model-based optimization

step which we have added for completeness. The exper-

iments with Starburst, ElSe, and ExCuSe, used their

default parameters, as provided by their source codes.

The experiments with Świrski et al. algorithm also used

default parameters, except for the pupil minimum and

maximum radii, for which the technique showed to be

quite sensitive. This parameter was adjusted once per

user.

The experiment was designed to compare the perfor-

mance of each method in a typical gaze estimation task.

Ten people (4 female) from 30 to 59 years old (mean

36.2) volunteered for the experiment. All participants

had normal vision without the need of any correction

lenses.

During the experiment, each participant had to fix-

ate their gaze on 35 small circular targets (7 pixels in di-

ameter) arranged in a 5×7 grid. Targets were displayed

one at a time in random order for about 3 seconds, and

the 800 ms interval 500 ms before the next target pre-

sentation were considered for analysis. A 1680 × 1050

resolution, 60 Hz, 22” monitor was used, with a 20 pixel

border at each side of the monitor. The distance be-

tween the monitor and the participants’ eyes was about

70 cm.

5.1 Apparatus

The xSDL eye tracker prototype was built using a low-

cost, off-the-shelf Play Station 3 video camera [34]. Be-

cause all algorithms except xSDL work with the dark-
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Fig. 8 System prototype used to compare eye tracking meth-
ods based on xSDL and dark-pupil-only methods.

pupil image, our prototype actually included 2 iden-

tical cameras and two independent lighting systems:

one to capture the sequence of dark and bright-pupil

images using structured illumination needed for xSDL,

and the other to capture only the dark-pupil images for

the other methods. Figure 8 depicts this setup.

The structured illumination system (used by the

xSDL method) was composed by two light sources: on

and off-axis, controlled by an Arduino board. The light

was provided by 850 nm LEDs.

The continuous illumination system responsible for

producing dark-pupil images only was built using 940 nm

LEDs. A flat-convex lens of 20 mm focal length was

used to improve the LED efficiency. This source was

also filtered using a narrow bandpass filter centered on

the emitter wavelength.

After passing through the objective lens, the light

was separated into two paths by a custom made beam

splitter. Each path projected light to a different video

camera: one for xSDL algorithm and the other for dark-

pupil-only algorithms. To avoid light interference be-

tween the different illumination systems, bandpass fil-

ters were placed in front of the camera sensors: a 850 nm

pass filter for the xSDL camera and a 940 nm filter for

the other camera. Thus, the eye image was captured

from the same perspective using both illumination sys-

tems (the stroboscopic technique and constant illumi-

nation), as shown in Figure 9.

5.2 Data analysis

We used 9 (out of the 35) points to calibrate a second

order polynomial function. This function was used to

estimate the gaze position at all of the 35 points to

compute the gaze estimation error.

We use three metrics to evaluate the methods: pupil

detection robustness, gaze estimation accuracy and pre-

cision, and processing time.

Pupil detection robustness refers to the proportion

of frames that a method is able to detect the pupil.

All images collected were manually inspected and only

those containing the pupil image were used for evalua-

tion. For xSDL, the sequence of frames contained bright

and dark pupil images. For all other methods, the se-

quence of frames contained only dark pupil images. Be-

cause Świrski’s method and Starburst always return a

pupil boundary even though these methods did not ac-

curately detect the pupil, we decided to consider frames

with a gaze estimation error above 5 degrees as no pupil

detection.

The accuracy of each method is defined as the av-

erage gaze estimation error over all 35 target locations.

Error in gaze estimation is the difference between the

actual target position and the estimated gaze position

in degrees of visual angle. The precision is given by the

standard deviation of each participant’s error.

The processing time is computed as the average time

a method took to process each frame. All methods were

timed using the same computer platform, a notebook

equipped with an AMD Turion(tm) II P560 Dual-Core

Processor with 2.5 GHz and 6 GB of RAM.

6 Results

This section presents the experimental results of pupil

detection robustness, gaze estimation accuracy and pre-

cision, and processing time.

6.1 Pupil detection robustness

For each participant × method in all captured frames,

we computed the proportion of frames where the pupil

was detected (i.e. with a gaze estimation error below 5

degrees). Figure 10 shows the boxplot for all methods.

Because data is not normally distributed, as can

be observed in Figure 10, we ran the non-parametric

Friedman test. Results showed a significant effect of al-

gorithm (χ2(4) = 28.93, p< 0.01). A post-hoc Wilcoxon

signed rank test with Holm correction showed that xSDL

(grand median 99.92%) was significantly different than

ElSe (grand median 64.51%), ExCuSe (grand median

81.28%), and Starburst (grand median 97.48%), p <

0.05 in all cases. The method of Świrski (grand me-

dian 99.6%) had no significant difference with any other

method. The difference between Starburst and ElSE

was also significant (p < 0.05).

6.2 Gaze estimation accuracy and precision

For each method, the gaze estimation error was com-

puted for all frames with a successfully detected pupil.

For xSDL and Świrski, the error distribution was right-

skewed, as shown in Figure 11. Starburst’s distribution
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Fig. 9 Example capture of a participant with an ongoing saccade. On top, xSDL camera images and on bottom, continuous
940 nm illuminated images.
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Fig. 10 Boxplot of pupil detection robustness for each
method computed with data from the 10 participants.

was also right-skewed, though with a larger error. On

the other hand, ElSe and ExCuSe had a slightly right-

skewed distribution with a larger error and dispersion.

Because of the different distributions, we computed the

median error of each participant for each method. Fig-

ure 12 shows the boxplot of gaze estimation error for

the 10 participants for each method.

As can be observed in Figure 12, xSDL was the most

accurate method (grand median 0.57o) and also the

most precise (it had the smallest inter-quartile range

(IQR) of 0.51o). We run a Friedman test and found

a significant effect of algorithm on accuracy (χ2(4) =

30.88, p < 0.01). A post-hoc Wilcoxon signed rank test

with Holm correction showed that xSDL was signif-

icantly more accurate compared to ElSe (grand me-

dian 2.37o), ExCuSe (grand median 2.2o), and Star-

burst (grand median 0.95o), p < 0.05 in all cases. There

was also a marginal significant difference compared to
Świrski (grand median 0.72o), p = 0.059. We also found

a significant difference between Starburst and ElSe (p

< 0.05).

6.3 Processing time

We measured the time (in milliseconds) to process each

frame. The histograms in Figure 13 show that the pro-

cessing time distribution varied largely among methods.

For Świrski’s the distribution was more scattered com-

pared to all other methods. ElSe and ExCuSe had a

bimodal distribution, that might indicate different ex-

ecution paths in their algorithms. Processing time of

xSDL and Starburst had a similar distribution.

We computed the median processing time per frame

for each participant and method. Figure 14 shows the

boxplot of processing time for the 10 participants. Be-

cause of the large difference in processing time among

methods, we used a logarithmic scale in Figure 14 to

facilitate visualization. As can be observed, xSDL had

the smaller processing time (grand median of 2.28 ms)

and also the smaller variation (IQR 0.33 ms). Starburst

had the second lowest average running time (grand me-

dian 6.31 ms, IQR 1.77 ms). On the other hand, Świrski

had the larger processing time (grand median 79.89 ms)

and also the larger variation (IQR 41.07 ms), followed

by ElSe (grand median 42.65 ms, IQR 0.48 ms) and Ex-

CuSe (grand median 18.25 ms, IQR 8.39 ms). A Fried-

man test showed a significant effect of algorithm (χ2(4)

= 39.28, p < 0.01). A post-hoc Wilcoxon signed rank

test with Holm correction showed that processing time

per frame differed significantly between all methods (p

< 0.05 in all cases).

7 Discussion

Experimental results support that xSDL is more robust,

accurate, precise, and requires less processing power
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Fig. 11 Gaze estimation error histograms for all participants and methods.
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Fig. 12 Boxplot of accuracy for each method computed with
data from the 10 participants.

compared to the other state-of-the-art methods that

were evaluated.

The improved pupil detection robustness of xSDL

could be attributed to the differential lightning tech-

nique, since it takes advantage of the sequence of dark

and bright pupil images generated by the alternating

light sources. The overlapping pupil area computed by

the difference of consecutive (dark-bright or bright-dark)

images serves as a robust estimator of the pupil location

in the image, thus discarding false positives. Dark pupil

image based methods rely on histogram analysis (such

as ExCuSe and Świrski) or high contrast areas (borders

detected by Canny-edge filter or derivative) as a rough

estimation of the pupil location. These feature-based

approaches could result in areas not corresponding to

the pupil to be detected as such, e.g. a black blob in the

captured image. Among these methods, Świrski was the

only one that had a robustness close to xSDL, but at

the cost of a much larger running time and hence com-

putational power.

xSDL was also the most accurate and precise method,

meaning it had the smallest error in gaze estimation.

Accurate gaze estimation is very important for many

applications, such as to point at small visual targets in

a gaze-controlled interface such as a virtual keyboard.

More accuracy allows to include more objects in an

interface, e.g. punctuation, accents, and control com-

mands in a virtual keyboard. Accuracy also reduces the

number of selection errors. Precision is also very impor-

tant, since gaze estimation is more consistent, improv-

ing the quality of gaze data. Better quality implies a

better usability in gaze-controlled interfaces, and also

more accurate results in medical applications that use

gaze information.

Computational efficiency is another advantage of

xSDL, as shown by the average processing time of each

method. Not only xSDL is the fastest method, but it

also holds the smallest dispersion among all methods.

Our prototype was tested at 60 frames per second to

keep infrared radiation within safe limits, as two inde-

pendent illumination sources were in use. By reducing

the infrared radiation emission (i.e. by using our tech-

nique alone), it is possible to run the prototype at 187

frames per second with the same low-cost PS3 video

camera. By using faster cameras it would be possible

to run xSDL at about 450 Hz with a similar computer

processor, given the short average processing time of

2.28 ms per frame. It is noteworthy that ElSe and Ex-

CuSe had a bimodal distribution processing time. This

could be explained because those two algorithms have

2 possible execution paths. If the main execution path

fails, then those methods use a simpler approach in an

effort to detect the pupil. Though we did not verified

whether ElSe and ExCuSe indeed ran different execu-

tion flows in our experiment, this hypothesis explains

the bimodal distribution in their processing time his-

tograms. Świrski et al. method possess the largest pro-

cessing time, of about 80 ms per frame, and also the
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Fig. 14 Boxplot of processing time per frame for each
method computed with data from the 10 participants. Note
that the y axis has a logarithmic scale to facilitate visualiza-
tion.

largest variation, making it most computation expen-

sive method we have evaluated.

xSDL can be used with any digital, off-the-shelf

camera. The only additional hardware requirement is

a micro-controller to control the firing of the strobo-

scopic lighting. Therefore, xSDL arises as a low-cost,

high-performance, and robust eye tracker alternative

for gaze-based applications.

8 Conclusion

Differential lighting (DL) is a robust and computation-

ally efficient pupil detection technique developed in the

90’s for analog cameras. We have shown, in previous

papers, that the use of stroboscopic differential light-

ing (SDL) allows DL to be used with any modern and

low-cost rolling-shutter digital camera. We believe that

its improved performance will compensate the trouble

of building the extra synchronization hardware (in case

it is not already available) in gaze enhanced wearable

computers.

This paper introduced the extended temporal sup-

port computer vision algorithm that further improves

the performance of SDL, we called xSDL. Traditional

computer vision tracking techniques are not used for

eye tracking in general because they are either compu-

tationally expensive (such as correlation based meth-

ods) or do not perform well due to the unpredictable

eye movements during fixations. SDL detects the pupil

at every frame by simple image differencing, and works

better when the overlap between bright and dark pupil

images is large, i.e., it works well during fixations. xSDL

selects keyframes (dark and bright pupil images) to

serve as reference images. The position of the pupil in

keyframes are computed with high accuracy. This po-

sition is then refined by xSDL using the translation of

the overlap region computed from the difference image.

To compare xSDL performance against other state-

of-the-art eye tracking algorithms available in the lit-

erature, we have created a two-camera apparatus that

simultaneously collects videos of the eye that are appro-

priate for xSDL (that requires bright and dark pupil im-

ages), and the other methods, that only use dark pupil

images. Therefore, the methods were compared using

videos showing exactly the same eye behaviors and with

the same frame rate (and other video properties).

Our results show that xSDL outperforms those 4 al-

gorithms. Using 240 line images, xSDL is able to process

up to 500 fps using a modest platform compatible with

a wearable computer, with an accuracy of about 0.6o

and detecting the pupil practically all the time. The

second most accurate and robust method (Świrski et

al. [35]) achieved an accuracy of about 0.7o and similar

robustness of over 99% of detections. This alternative

though is much more computationally expensive, being
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able to achieve about 13 fps using the same computing

platform.
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