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Fixations and saccades are commonly used in gaze-based interfaces. State-of-the-art algo-
rithms for eye movement segmentation work well for high speed and accurate eye trackers,
which are still too expensive and bulky for most gaze interaction applications. For low-end
eye trackers running at 30 to 60 Hz and with accuracy of about 1 degree, such algorithms
do not perform as well. We propose a robust, real-time method to classify eye movement
data into four categories: fixations, saccades, drifts, and none. The classifier is based on a
finite-state machine (FSM) and is robust to missing data and blinks. The approach first fil-
ters raw gaze data to recover missing samples and smoothes the data. The current filtered
sample is then classified by computing spatial dispersion and absolute eye velocity using a
small number of recent gaze samples and the current state of the machine. Qualitative evalu-
ation have shown evidence that FSM reduces latency after blinks, reduces the number of re-
focusing events and improves user experience during the interaction compared with a simple
fixation detector based on a running average window. The source code is publicly available at
https://bitbucket.org/diaztula/gaze_movements_£fsm/.
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Introduction

Dwell-time gaze based interfaces use fixations for point-
ing and selection (“clicking”) of elements of the inter-
face (Majaranta & Raihi), 2002). Though simple, this ap-
proach suffers from involuntary selections (known as the
Midas touch problem (Jacob, [1990)), particularly when
the dwell-time is very short. One alternative to avoid
the Midas touch problem is the use of smooth pur-
suits (Esteves, Velloso, Bulling, & Gellersen, [2015) and gaze
gestures (Wobbrock, Rubinstein, Sawyer, & Duchowskil
2008} [Kurauchi, Feng, Joshi, Morimoto, & Betkel [2016).
The classification of gaze gestures can be simplified by a ro-
bust method for the segmentation of fixations and saccades
from the raw eye data stream (Salvucci & Goldberg, [2000;
Belkacem, Shin, Kambara, Yoshimura, & Koike), [2015]).

The accuracy of video-based eye trackers (that estimate
point-of-gaze) is currently between 0.5-2 degrees of visual
angle. Accuracy in gaze estimation is affected by several
factors, such as variations in illumination conditions and by
user’s head movements. Besides intrinsic errors of the eye
tracker, the segmentation of a fixation on an interface element
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(such as a key on a virtual keyboard) commonly requires
smoothing of the raw eye data to remove high frequency
components. Besides noise, gaze data is also corrupted by
missing data e.g. during eye blinks. Dealing with blinks is
an important issue for gaze interaction. For example, in a
dwell-time based interface, a blink can interrupt the selec-
tion process, forcing the selection timer to start over again
and slowing down the interaction.

There are freely available tools to detect fixations in raw
gaze data, such as the ETU driver (Spakov} 2017). Nonethe-
less, detecting fixations does not solve the problem of los-
ing focus due to blinks or transient lost tracking of the eyes.
In this paper we propose a rubost, real-time eye movement
classification algorithm to improve the performance of gaze
interfaces using a finite state machine (FSM).

Filtering and classification

A gaze data sample is basically composed of the coor-
dinates of the estimated point-of-gaze and its time stamp.
Some eye trackers might report also the pupil(s) diameter(s)
and other features. Not all samples coming from a video-
based eye tracker are valid samples. Invalid or undefined
samples may be due to noise, lost tracking of the eyes, but
most are reported during eye blinking.

We assume as input for our algorithm an eye data stream
of samples that correspond to the nominal frequency of the
eye tracker, where defined and undefined samples can be eas-
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ily determined. The incoming samples are inserted in a queue
Q of size N, where the element Q[0] is the most recent, and
Q[N — 1] is the oldest in the queue. The algorithm classi-
fies the sample Q[N/2]. If this sample is undefined, its co-
ordinates are estimated by averaging the coordinates of its
left and right neighbors, provided that they are defined. If
the current sample is defined, it is filtered using a Savitzky-
Golay filter (Savitzky & Golayl [1964) and then classified as
a fixation, saccade, or a drift, based on the spatial dispersion
and absolute eye velocity computed from the samples in Q.

The parameters for detecting fixations are the maxi-
mum dispersion and minimum fixation duration. Disper-
sion is computed by averaging the variance of the x and y-
coordinates. The maximum variance and minimum duration
to classify the current sample as part of a fixation were em-
pirically set to 2 degrees and 50 ms, respectively.

To decide if the current sample belongs to a saccade, we
compute the absolute gaze velocity in degrees per millisec-
onds using a differential filter. If the absolute velocity is
above a threshold then the current sample belongs to a sac-
cade. This velocity threshold is computed dynamically from
previous samples that belong to a fixation or a drift. Those
samples are fitted to a normal distribution. After several tests,
we defined the velocity threshold as the mean plus 1.7 times
the standard deviation. A defined sample that belongs neither
to a fixation nor to a saccade is classified as a drift.

Improving robustness using a finite state
machine

To improve the robustness of the classification algorithm
we defined the FSM shown in Figure[I} There are four main
states: NONE, DRIFT, FIXATION, and SACCADE. Solid
lines show transitions between these four main states. Dif-
ferent from existing approaches (e.g. (Salvucci & Goldberg,
2000)), our FSM includes additional (shadowed) states that
model the behavior in the case of missing samples, blinks,
and other artifacts. For example, if a undefined sample ar-
rives during a fixation, then the state changes to NOISE_FIX.
If shortly after entering NOISE_FIX a defined sample is
received, then the state goes back to FIXATION. On the
other hand, if undefined samples keep arriving for too long
(more than minBlink milliseconds) then the state changes to
BLINK_FIX, indicating that the user is likely to be blink-
ing. A defined sample while in BLINK_FIX changes the
state back to fixation. If the state remains in BLINK_FIX for
longer that maxBlink milliseconds, then the state changes to
NONE.

For the DRIFT state the behavior is similar to FIXATION.
For the SACCADE state, the behavior is similar to FIXA-
TION and DRIFT, except for the fact that after a blink dur-
ing a saccade (BLINK_SACC) the state changes to DRIFT,
since there are not enough defined samples to compute the
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Figure 1. Finite state machine to classify gaze samples into
fixation, saccade, drift, and none.

absolute velocity reliably.

We have tested the proposed FSM in a dwell-time based
virtual keyboard with frequencies of 500, 120, 60, and 30Hz.
Even at 30Hz FSM has shown to be robust to blinks and small
correctional saccades made while fixating a key. We have
compared FSM with a simple fixation detector based on a
running average window in the same front-end virtual key-
board. Though results are only qualitative, there is evidence
that FSM reduces latency after blinks, reduces the number of
re-focusing events and improves user experience during the
interaction.

Conclusions

Our classification algorithm uses a finite state machine
to classify the raw gaze data into 4 different states: fixa-
tion, saccade, drift, and none. We have tested the algo-
rithm in a typing experiment using a dwell-time virtual key-
board (Diaz-Tula & Morimotol 2016). Preliminary results
show that the algorithm outperforms a simple running av-
erage window that just computes fixations, resulting in bet-
ter performance and improved user experience. The algo-
rithms are implemented in Python and run in real time. The
source code is freely available for download at https://
bitbucket.org/diaztula/gaze_movements_fsm/.
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