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FOREWORD

This report describes accomplishments on a UGV RSTA project conducted by a con-
sortium led by the University of Maryland and including the University of Pennsylvania,
the University of Rochester, and the National Institute of Standards and Technology. We
first review work done on the design, implementation and integration of real-time vision
algorithms for image stabilization, detection of moving objects from a moving platform and
camera control. We then present brief descriptions of a number of supporting basic research

projects conducted by the members of the consortium.
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1 Introduction

Our RSTA on the Move project is a program combining

e development and integration activities ultimately leading to an experimental, real-time
active vision system for locating and tracking moving targets from a mobile platform,

and

e basic research on fundamental active vision problems including motion estimation,
image sequence stabilization, detection and characterization of independent motion

patterns, and real-time sensor control.

Our integration activities involve algorithm development and integration on the Datacube
real-time image processing platform, and experimentation on video sequences obtained, ini-
tially, off-line from a sensor mounted on a HMMWYV at NIST, and, ultimately, on-line using
the same NIST platform with onboard real-time and parallel processing. Section 2 describes

our accomplishments on development and integration.

Real-time algorithms for image stabilization and moving object detection have been de-
veloped at Maryland, while Rochester has developed a more general real-time algorithm for
detection of independently moving objects. Both the Maryland stabilization algorithm and
the Rochester independent motion detector have been transferred to the NIST Datacube,
and were demonstrated during 1995 at Martin Denver. Other work involves the integration
of these two algorithms on a common Datacube/SPARC platform, and design and imple-
mentation of spatio-temporal grouping algorithms for focusing attention of the active vision
component of our system on an image window containing an independently moving object.
Research at the University of Pennsylvania has emphasized camera control algorithms that
allow us to track the moving target and to maintain as large an image of the target as pos-
sible through control of a zoom lens. Some core camera control software has been ported
to the NIST platform, with NIST and Pennsylvania collaborating on the design and imple-
mentation of the full camera control subsystem. Figure 1 shows the tasks of the individual

contractors.
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Figure 1: Block diagram of system architecture.

In addition to development and integration activities, the consortium supported a broad
spectrum of fundamental research activities in time-varying image analysis and active vision.
A set of research vignettes is presented in Section 3, including descriptions of research projects
on motion estimation, image stabilization, comparison of image stabilization algorithms in
the context of a real-time target acquisition and tracking system (joint research with the

Army Research Laboratory), and camera control.

2 Integration Activities

2.1 University of Maryland

(Yiannis Aloimonos, Stephen Balakirsky, Rama Chellappa, Loong Fah Cheong, Cornelia Fermiiller,
Carlos Morimoto, Yi-Sheng Yao)

Research at Maryland emphasized image stabilization, with some supporting research
on detection of constrained (vehicle-like) independent motion. The goal of our image sta-
bilization process was to maintain a stable scene background in a video image sequence.
This is accomplished by estimating and compensating for the effects of the movement of the

vehicle on the original input image sequence, so that in the resulting stabilized sequence the

2



background of the scene appears, ideally, as if the vehicle were stationary.

After the sequence is stabilized, independently moving objects can be detected using ei-
ther the flow-based approach developed at the University of Rochester, or a frame-differencing
approach developed by the University of Maryland. The Maryland approach is based on an
efficient algorithm for computing a temporal median filter from the stabilized sequence. To
optimize for detection of independent vehicle motion, we employ a filtering approach that
integrates the results of velocity-tuned filters over several frames and produces the final out-
put of the system. Details of the Maryland work are given below, with an emphasis on the

real-time implementation of image stabilization developed by Carlos Morimoto.

2.1.1 Real-time Digital Image Stabilization

Our image stabilization system is composed of two modules: one for motion estimation
and a second one for motion compensation. The motion compensation process removes
unwanted motion from the desirable smooth motion following the initial estimation process.
An advantage of electronic image stabilizers over mechanical ones is that motion can be
compensated on demand, offering great flexibility by simply modifying some parameters of

the compensation algorithm.

2.1.2 Motion Estimation

Our first prototype described in [9] was based on a multi-resolution image registration tech-
nique developed by Zheng and Chellappa [20]. The technique matches a small set of feature
points between two frames using a weighted correlation scheme and estimates four affine mo-
tion parameters using the computed feature displacements. The processing of each higher
resolution level refines the estimates obtained from the registration of the lower resolution
levels. This scheme was later replaced by a faster multi-resolution tracking scheme that
works from coarse to fine levels. We also adopted a different similarity measure, given by
the sum of squared differences (SSD) of local patches around each feature. No estimation or
refinement is done between different resolution levels, and the final displacements are used

to estimate the motion parameters.




In order to estimate the movement of the camera in a rigid environment we use the model
described in [20]. To better understand the model, consider a camera mounted on a balloon.
The camera is pointing down at a flat surface S, with its optical axis always perpendicular to
S. In such a configuration, translations and rotations of the balloon will cause the image to
translate and rotate correspondingly. The image will change scale according to the balloon’s
changes of altitude.

Under this motion model, the transformation between two different camera positions is

defined by

Zo cos® —sin® 0 z7 Az
% | = | sin® cos® 0 |+ Ay (1)
20 0 0 1 21 Az

where (z;,y;, 2;) are 3-D coordinates relative to a coordinate system fixed on the camera at
time ¢;, for 7 = {0,1}. (Az, Ay, Az) define the translation of the camera measured from the
coordinate frame at time #o, and © is the rotation angle, also measured with respect to the
coordinate frame at time #y. Image coordinates at time ¢; will be denoted by (X;,Y;). The
image plane defined by the X; and Y; axes, which are respectively parallel to the z; and y;
axes and consequently perpendicular to the z; axis, has its origin at z; = f where f is the

camera focal length. Under this configuration, the equations for perspective projection are

X; _ i x; (2)
Y. ] #F\w

Combining (1) and (2), we get

X, = fzo  f(zicosd—ysinf+Az) =z <X1cos®——Y1sin@+f—A;§> 3)
1

20 21+ Az T a4+ Az

__fyo_f(xlsin0+ylcos9+Ay)_ 2 ( . Ay)
Yo = 2 ot Az = T A Xlsm®+Y1cos®+f—zT (4)

The term z;/(z1 + Az) = 21/2o is the change in scale and will be denoted by S, while
the terms (f Az)/(z1 + Az) and (f Ay)(z1 + Az) correspond to the translation in the image
4



coordinate system, which will be denoted by (AX,AY). In matrix notation, the relation

between two image frames taken at times g,y is

Xo cos® —sin® X AX
=S + (5)

Yo sin® cos©® Y; AY
Notice that the scale factor S in this model is inversely proportional to the ratio of the
distances between two arbitrary image points at times ¢p,¢;. Thus S can also be obtained
by considering any two points in the image frames taken at ¢o and ¢;. Let Ap and By be two
arbitrary points in the image frame at to (fo), and A; and B; be their corresponding points

in f;. Let §; be the distances between A; and B;, for i = {0,1}. Then the scale factor can

be computed by
zZ1 60

s=2= (6)

20 B 5_1
The next section shows how to use this model to recover the four parameters that describe
the 2D motion of the camera. It is assumed for the moment that a set of matched pairs of
features is available. Descriptions of the feature detection and tracking process will be given

later.

2.1.3 Recovering the Motion Parameters

Given a set S; of N feature points in frame f; and the set S; of corresponding points in frame
i, the scaling factor S is computed from (6) since it is invariant to translation and rotation.
The distances are taken with respect to the center of mass of each set. The position of the

center is given by

X, -Llsx,. 7v.—Lisvy 7
f—j\,-kz:; fk f—]—V—Z Tk (7)

k=1
where (X ;,Y s) are the coordinates of the center of mass of the feature set Sy and (X, Yi)
are the (X,Y') coordinates of feature k in frame f. Let é5; be the distance from feature k to

the center of mass for frame f, so the scale between two frames ¢ and 7 can be computed by




r t 1-1 t
bi 6; é; 0; 01 bi1
din oin N din oin oin

Tk bik-bik

= 8
S heq 66k )

= §

where X* denotes the matrix transpose of X.

The computation of the translation and rotation parameters follows the estimation of the

scaling factor. Assuming small rotations, the trigonometric terms of (5) can be linearized to

()<l
=8 + ’ 22{17"'7N} (9)
Y 0 1 Y; AY

Using (9) for all N matched point pairs, a system of 2V linear equations in three un-

obtain

knowns (0, AX, and AY) is obtained. Rearranging (9) in the matrix form b = Az, we

have

[ Xo—SX; ) _SY; 10 )
Yh—SY}l SXJ'I 01 0
b= : ; A= : . T=| AX (10)
Xin — S8Xjn ~8Yn 1 0 AY
\ Yiv—8Yn SX;n 01

where T can be solved using the normal equation Z = (4'A)~1A%.

2.1.4 Automatic Extraction, Selection and Tracking of Feature Points

2D models are appropriate for image sequences of distant scenes where perspective effects
can be neglected. Unfortunately this is not true for typical sequences taken from a moving
wheeled vehicle where it is common to have objects in the scene passing close to the camera.

The presence of close objects violates the 2D motion assumption, but this model can still

6



be used if we are able to restrict ourselves to image points corresponding to distant scene
points.

A heuristic rule for selecting features on the horizon is currently being used. The horizon
is a very strong visual cue, present in almost every off-road situation. The first step in
feature extraction is to smooth the input image by convolving it with a 5 x 5 Gaussian kernel
operator. Then the smoothed image is convolved again with a 5x 5 Laplacian kernel operator.
The resulting Laplacian image is also used for feature tracking and also thresholded. The
thresholded image is divided into N vertical zones, where N corresponds to the number of
features to be tracked. Each zone is searched from top to bottom, and the topmost feature

is selected for tracking.

The features selected in frame f;_; can be tracked to frame f; by a multi-resolution
refinement scheme using parameter estimation proposed in [21]. Although this process is able
to produce very good estimates of the motion parameters, it is computationally expensive
since it uses a weighted correlation scheme to determine the best feature matches. We use
another similarity measure which is given by the SSD over local windows (SSD windows)
centered at the feature points. This measure is computed over a neighborhood (search
window) around the candidate matches in frame f;, and the point which returns the minimum
SSD is selected as the best match.

The SSD between two windows of size W = (2w+1)x(2w+1) centered at P,_1(z,y) € fi-1
and P;(u,v) € f; is given by

SSD = 3 [(Pi-s(z + i,y +3) = Plu+ v +5)7), 5,7 € [Fwtuw]. (1)
ij

The use of Laplacian images for feature tracking also helps to reduce the sizes of the SSD
windows. The Laplacian operator enhances the regions around the tracked features and
smoothes the regions of constant brightness that in general surround the edges. Since the
Laplacian operator is rotation invariant, edges of different orientations are equally enhanced
so that the Laplacian images are not affected by possible rotations of the input images.

Tracking is performed in a hierarchical fashion. A Laplacian pyramid L[t] is formed
by combining several reduced-resolution Laplacian images of frame f;. Each level of the
pyramid will be denoted by L[t, ], where Lt,0] is the Laplacian image of the original frame

7



of size Z (an image of size Z has Z x Z pixels). The size of an arbitrary pyramid level [
is determined by Z. The levels of the pyramids L[t — 1] and L[t] are used from coarse to

fine resolution, where each new processed level contributes to determining the position of

the matching feature.

Assume that the pyramids have j +1 levels, and level j has the coarsest resolution. After
the selection of features is performed using L[t —1,0], they are scaled down to level L[t -1, j]
and used to determine their matches in L[t j]. For a feature P! ,(z,y) of L[t—1, ], a search
for the minimum SSD is performed over a search window of size S = (25 + 1) x (25 + 1)
centered at the pixel P! (z,y) of L[t,5]. Let P} (u,v) be the selected matching point for
Ptj_l(a:, y). Notice that the maximum displacement supported by this search is only s pixels.
For the next pyramid level, the coordinates of these pairs are scaled up by a factor of 2.
For the feature P/ 7!(2z,2y), the search for the minimum SSD is now performed around the
pixel Ptj -1(2u,2v). This process is repeated until the finest resolution level 0 is reached.
Notice that since the displacement is doubled after every level, the total displacement that

this algorithm can handle can be very large even for small values of s.

2.1.5 Subpixel Matching

After the grid-to-grid matches are obtained from the hierarchical search, displacements with
subpixel accuracy can be easily computed for the finest resolution level of the pyramid using
a differential method [18, 21]. Subpixel accuracy is necessary to eliminate the quantization
error introduced when the iﬁages are digitized.

If a feature P°(u, v) has offset (6z, §y) relative to P2, (u,v) (assume they were tracked and
registered so that the translation (§z,6y) is very small), i.e., PP(u,v) = P2 ,(u—éz,v—by),

the frame difference can be expanded as

d(uv v) = *Pto—l(u7 ’U) - 'Pto(ua ’l)) = Pto—-l(ua U) - Pto—l (u —éz,v — 5y)

0P 1 (u,v) OP2 4 (u,v)
52 dr + By oy (12)

~>

The terms OP2,(u,v)/8z and P2 ,(u,v)/dy can be approximated by forward differ-
ences, so that for a small neighborhood around P2, (u,v) of size W = (2w + 1) x (2w + 1)

8



there will be W simultaneous equations
D=GA (13)

where D is the known difference of intensities vector (P2, (u,v) — P?(u,v)), G is the known

gradient matrix and A is the unknown vector of translations, so that

8Pt°_1 (~w,—w) 8Pt°_1 (—~w,—w)

d(—w, —w) e 37 5o
D= . G= : : A= (14)
w by
cl(w, w) 8P?_ala(:w,w) BPP_éZ(jw, )

The system of equations in (13) can be solved by A = (G*G)~'G'D.

When the feature pairs with subpixel accuracies become available, the motion parameters

are computed using (8) and (10).

2.1.6 Motion Compensation

The result of the motion estimation process described in the last section is an estimate of the
motion between two frames. The objective of motion compensation is to maintain a history

of the motion estimates to create a stabilized sequence.

The manner in which motion estimation and compensation are performed defines the
structure of the stabilization algorithm. We have compared two possible implementations:
- one that always uses two consecutive frames from the input image sequence to estimate
the motion parameters, termed the frame-to-frame algorithm (FFA), and a second one that
keeps a reference image and uses it to estimate the motion between the reference and the
current input image, termed the frame-to-reference algorithm (FRA). We describe the first

algorithm here.

2.1.7 The Frame-to-Frame Algorithm

The block diagram of the frame-to-frame algorithm is shown in Figure 2. The Laplacian
L[t] is built from the input camera image and sent to a delay buffer storage that keeps the

previous pyramid L[t — 1] for the estimation process. The feature detection/tracking module

9




i L[y
Camera - Laplacl.an Delay
Pyramid
f(t) L[] Lft-1]
\i y
Feature
Monitor Warper Detection /
Tracking
1
Motion Pars Feafure
Pairs
User | Motion _ Interframe Motion
Interface Compensation Motion Pars Estimation

Figure 2: Block diagram of the frame-to-frame algorithm (FFA)

uses L[t — 1,0] to extract features that are used in hierarchical tracking. After the grid-
to-grid matches are found, this module computes the subpixel-accuracy displacements that
are used by the motion estimation module to compute the interframe motion. The motion
compensation block must then compute the total motion of the camera by combining all the
interframe estimates over time (since it started running, e.g., t = 0). The total motion is
used to warp the current frame f;, and the result of this operation is sent to the monitor.
In this way, since all frames of the sequence are being warped back to L[0,0], the resulting

sequence is stabilized. To combine the motion parameters, assume that the transformation

used to warp fi—; is

X[0,0]
] cos @y —sinOg X[t —1,0] AXy
=S + (15)
sin®g cos B Y[t—1,0] AYy
Y'[0,0]
and the interframe motion is
X[t—-1,0 ©;,; —sin®,_ X[t,0 AX,_
[ ] _ s cos ©,_1 sin ©;_ [t,0] N 1 (16)
Y[t-1,0] sin®;_; cos®; Y[t 0] AY;_,

where (X[t,1], Y[t,4])! are the image coordinates of L[t,:]. Substituting (16) into (15), it is

straightforward that the combined motion parameters w; = (AX;, AY;, 0;,S;)" until frame

10



St will be

AX; So cos OgAX;_; — Spsin OpAY;; + AXp
AK 80 sin @OAXt—l + So CcOos GOAK—l + AY'O
®t @0 + ®t-—1
St 80 X St—l

Since features are tracked between consecutive frames, they do not need to be extracted
in every frame. Figure 3 shows a simple scheme where the feature extraction algorithm is
applied to every other frame instead of every frame. Suppose that the system uses frame f;
to extract features. This set of features can be used for tracking features backward between
f: and f;_;. When f;,; is acquired, the same set can be used for forward tracking between
f: and fi41. Finally, when f;.» comes in, new features must be extracted and the process
continues with backward tracking.

e ° e

1

resolution

Refinement

t-1 t t+1 time

Feature Detection

Backward Tracking Forward Tracking

Figure 3: Feature detection and tracking

This strategy is very simple to implement and just requires a slightly more complex
control structure. The forward tracking is done as described previously, but a few changes
must be made for backward tracking. First, the same tracking algorithm is used by simply
switching f; with f;_; and the motion based on the inverted pairs is computed. This process

estimates the motion from f; to f;_;, but instead we need to compute the forward motion



from f;—1 to f;. This can be done by

— <t

Xt Cos @t —sin @t Xt—l AXt
S, +

Y; sin®; cos©; \ Yi1 AY;
Xt-—l _ St_l COs Gt sin G)t \ Xt - AXt (18)
Yi1 —sin ©; cos O; Y; — AY;

From (18) it is clear that the motion parameters from fi—1 to f; can be written in terms

of the backward motion parameters by

AXi —(cos ©;:AX; + sin ©;AY;)/S;

AY;_4 _ —(—sin ©;AX; + cos ©;AY;)/S; (19)
01 -0,
Si-1 1/8:

If the motion can be reliably estimated for large feature displacements, it is very simple
to extend the backward/forward estimation scheme to utilize larger steps between feature
extractions.

Due to the dynamic nature of the problem, the scene as a whole is under constant mod-
ification, so that after some relatively short time the original frame may not have anything
in common with the current frame. An important characteristic of this algorithm is that it
continues to compute the global motion even in these situations since, in general, the overlap
between two consecutive frames is considerable. Of course the warping of the current frame
using this global motion takes the image completely out of view. In such cases, the user in-
terface module allows the user to reinitialize the system, so that another reference is taken.
It is also possible to set motion limits, so that whenever the overlap between the reference

and the current frame is not large enough, the system can reset itself automatically.

When the motion of the camera is predominantly lateral, i.e., the camera is moving
perpendicular to its optical axis, the construction of a mosaic has some advantages [2].
It offers better visualization and also helps in the estimation process. Unfortunately, this
technique does not help for forward (or backward) motion, i.e., motion along the optical

axis, which is considerably more natural than lateral motion.
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Besides reinitialization, the FFA can exhibit drifts due to the accumulation of error,
which although very small between frames, can become considerable after long periods of

time.

2.1.8 Hardware Description

The algorithm was implemented using a MaxVideo 200 board connected to a SUN SPARC-
station 20/612 via a VME bus adaptor. The MV200 is a parallel pipeline image processing
hardware system manufactured by Datacube Inc. The system is basically composed of the

following dedicated devices:

1. Architectural Adaptor Version B (AB device): This provides a VME bus interface with
the host computer, serving as the mother board for all the other devices. It allows data
path programmability to and from all other MaxVideo processing resources through a

20 MHz crosspoint switch.

2. Advanced Memory (AM device): This provides basic image storage capabilities. One
AB device can host up to 6 AM devices (Mem00 to Mem05), each having either 1, 4 or
16 MBytes of physical storage. Our board has 6 AM devices with 4 MBytes of physical
memory each. These devices are typically used as buffers for several image processing

operations, including image acquisition and display.

3. Analog Generator (AG device): This provides display and graphics overlay capabilities.

It can be programmed so that it can be connected to many different types of monitors.

4. Advanced Pipeline Processor (AP device): This processor can perform three basic sta-
tistical operations (histograming, feature listing, and modified Hough transform), mor-
phological operations, and neighborhood multiply and accumulate (NMAC) operations
that can perform convolutions of an entire image with an (up to) 8 x 8 convolution
mask. Our AP device also hosts a second-order polynomial warper module that is able

to perform second-order polynomial transformations in real time.

5. Analog Scanner (AS device): This device digitizes the analog input video signal, storing
the image in its own physical storage element.
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6. Arithmetic Unit (AU device): This device is able to perform several linear, non-linear,

and statistics processing operations.

Each device consists of a variety of processing elements, including input/output ports,
memory elements, multiplexers, look-up tables, etc. The MV200 image processing system
comes with ImageFlow, a collection of C routines that controls and connects these processing
elements. The task of the programmer is to set the control parameters and connect all the

necessary elements in order to perform the desired computations on the input image stream.

The connection of elements is done within the elements of one device. Connections be-
tween devices are made through the crosspoint switch of the AB device. The basic processing
unit, the pipe, that defines a path between two memory storage elements (typically from the
AM device). To define a pipe, all elements within the pipe must be connected, including the
connections between devices, and the control parameters of each element must be appropri-
ately set. After the pipe is ready, it can be fired (once or continuously), so that the data
from one memory element flows through the pipe to the second memory element, where the

processed data can be accessed and further processed.

For example, a simple convolution can be defined by three pipes: One pipe connecting
the AS device (which is connected to a camera) to a memory storage device, say Mem05;
a second pipe for the convolution, connecting Mem05 to MemOO through the convolution
element in the AP device; and a third pipe for display purposes, connecting the result of the

convolution stored in Mem00 to the AG device (which is connected to a monitor).

2.1.9 Implementation of the Frame-to-Frame Algorithm

Figure 4 shows a block diagram of the Datacube implementation of the frame-to-frame
algorithm. The simplicity of the system contributes to its fast performance. We initially
built all the modules in C++ for simulation purposes and then ported the appropriate
modules to the Datacube. To optimize performance, communication between the Datacube
and the host computer (the SUN workstation) was kept to a minimum.

The acquisition pipe stores frames of size 512 x 480 continuously into Mem05; they
are digitized by the AS device. A one-shot pipe links Mem05 to Mem04 through the AP
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Figure 4: Block diagram of the Datacube implementation of the FFA

convolution element, loaded with a 5 x 5 Gaussian convolution kernel. The input port of
Mem04 is set to subsample the input by a factor of two. To continue the subsampling
process, a looping pipe around Mem04 creates several subsampled Gaussian images, until a
32 x 30 image size is reached. To avoid superposition with finer resolution images, the coarser
images must be carefully placed into Mem04. All images in Mem04 are then convolved with
a 5 x 5 Laplacian kernel and stored in Mem03. The 32 x 30, 64 x 60 and 128 x 120 images
are sent to the host computer. Features, typically five, are extracted from the 128 x 120
image, and tracked within subpixel accuracy. We allow for local displacements of +3 on
each level, so that the system is able to support a maximum displacement of +21 pixels in
the 128 x 120 image. After the computation of the motion parameters, they are used to set
the warper module in the AP device. The 128 x 120 image stored in Mem04 is warped and
sent to Mem00. Finally the result is displayed by the pipe from Mem00 to the AG device.
If the parameters are appropriately scaled, the warper can be easily set to warp any image,
including the original one stored in Mem05. The host also controls the forward/backward

scheme and the user interface.
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2.1.10 Experimental Results

This section presents experimental results obtained from a video sequence taken from the
NIST HMMWYV. Unfortunately, still images are not the most appropriate way to display the
results of such a dynamic process. Those readers with access to www browsers may want to
look at the MPEG movies, containing a few original and stabilized sequence samples, that

are available at:

http://www.cfar.umd.edu/"~carlos/stabilization.html.

Figure 5: Stabilization results.

Since our stabilization technique is supposed to stabilize the entire reference image, the
difference between two stabilized frames should be close to zero everywhere; this is not
true in the case of the original sequence due to the motion of the camera, which causes
misalignments in the images. The top of Figure 5 shows two stabilized frames and their
differences, while the bottom shows the corresponding frames from the original sequence. For
illustration purposes, the differences were thresholded, so that the black spots correspond
to high-intensity discrepancies. In this case, the number of black spots in the difference of

images can be regarded as an error measure that stabilization tries to minimize.

The original sequence was recorded from the NIST HMMWYV while moving forward.
That is the reason for the shrinking in the stabilized frames. It can be seen that objects
closer to the camera (e.g., a car to the left and a lamppost to the right) are quite noticeable
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(the error is large) in the stabilized sequence because their motion does not fit the 2D model,
but it is clear that the region around the horizon practically disappears (the error is small)
in the difference image. Observe that since we are tracking distant features, the system is

quite robust to perspective distortions that occur in other parts of the image.

A
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Figure 6: Stabilization results for off-road navigation.

Figure 6 shows another part of the tape where the vehicle is navigating on rough terrain.
Again, the error is much smaller around the regions close to the horizon, but high on the
bottom regions due to the different image flow of the grass pattern, which is not appropriately
compensated by the 2D model. The results are apparently good enough for visualization, but
segmenting independently moving objects directly from the difference of stabilized frames is
not straightforward, mainly due to regions that do not fit the 2D motion assumption, since
they are also segmented after the difference image is thresholded. Temporal median filters
combined with velocity-tuned filters are used in [9] to detect independently moving objects
(IMOs). Qualitative approaches [10, 11] to the detection of IMOs could also benefit from

electronic image stabilization.

During these tests the system was set to use search windows and SSD windows of the
same size (7 x 7). For these settings, the system is able to process about 20 frames per
second. Table 1 shows how the frame rate degrades when the search window is increased

and the SSD windows are kept constant. Our host computer is running SUN-OS 4.1, which is
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not the most appropriate operating system for real-time applications. Thus, for each search

window, three trials of at least 1000 frames were processed and the average result is shown.

Table 1: Performance evaluation of search window sizes.

Local Search | Global Search | Frame Rate | Image Velocity
[pixels] [pixels] | [frames/s] [pixels/sec]

+1 +7 21.8 152.6

+2 + 14 20.8 291.2

+3 + 21 19.7 413.7

+4 + 28 18.4 515.2

+5 + 35 17.0 595.0

Hansen et al. + 32 10 320

It is possible to consider the frame rate alone as a basis for comparison, but frame rate and
robustness to large pixel displacements can be combined by considering the maximum pixel
velocities supported by the system. The rightmost column in Table 1 gives the maximum
pixel velocities that each setting is able to process. This might suggest that the system is
more robust when set to search displacements of magnitude 5 instead of 3, because despite
the loss in frame rate there is a considerable gain in feature velocity that the system is
able to track. Unfortunately, when the search space is increased, the narrow SSD window
being used is more likely to find a false match. Increasing the SSD window provides better
discrimination between features and decreases the probability of false matches. On the other
hand, the frame rate drops considerably.

The last row of Table 1 shows the performance of the stabilization system presented by
- Hansen et al. [5]. Their system is able to stabilize images with velocities of 320 pixels per
second, running at 10 frames per second. Despite the better performance figures of our
system for a search window of size £3, we expect that their system may be more precise
in the computation of the motion parameters since several local patches contribute to the
refinement and estimation of the parameters, while we use a very limited set of feature
points that are simply tracked and used for estimation. On the other hand, our technique
can handle sequences with regions that do not fit the 2D model if the features are constrained

to distant points of the scene. Also, for real-time applications, faster frame rates (closer to
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video frame rate) might be more appropriate.

The fast frame rate was obtained in part by reducing the number of features to be tracked
(typically set to 5). This explains why the system is so sensitive to false matches and bad
features (features in regions that do not fit the 2D model). Assuming that translation is
dominant, the flow of distant (or vanishing) points should be very small. So, to reduce
the sensitivity of the system to bad features and false matches, the motion parameters are

computed based on the three features with minimal displacements.

2.1.11 Detection of Independently Moving Objects

Image stabilization renders the background of the image approximately stationary. In order
to overcome the effects of residual motions, we implemented a temporal median filter. This
filter creates a median image that is composed of the median values of the last k£ frames. In
a sequence of pixel gray levels from k frames, the gray levels arising from an independently
moving object tend to be outliers with respect to the median of the sequence, so that they
at least partially disappear from the median image. A simple image differencing scheme can

then be applied to detect independent motion on a frame-by-frame basis.

A filtered image is a binary image obtained by thresholding the difference between the
median image and the current frame. This process tends to erase the background and high-
light the locations of independently moving objects. These filtered images still contain noise
(due to imperfect stabilization) and spots corresponding to close scene objects that appear
to move due to motion parallax. Velocity-tuned filters are used to reject the stabilization
noise; motion parallax spots are also rejected if their apparent motion in the image is out of

the velocity range for which the filter is tuned.

Assume that a filtered image f; contains several spots, and we want to select only those
that move linearly at a rate of p pixels per processed frame. If such spots also appeared in the
previous frame, f;_1, by the time frame f; is captured these spots must have moved p pixels
away from their f;_; positions and are therefore located in frame f; somewhere on circles, p
pixels in radius, centered at their f;_; positions. If we select the pixels that correspond to

the intersections between the spots of f; and the spots generated by replacing the spots of
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f;—1 by the appropriate circles (predicted positions), we obtain good candidates for regions
moving at p pixels per frame. This scheme can be extended to include more than two frames,
since spots in frame f;_, should be 2p pixels away, and spots in frame f;_; should be jp pixels

away. Implementation issues regarding these filters are given in [9].

2.1.12 Experimental Results

Figure 7 shows a frame of a video sequence taken from a moving vehicle and Figure 8
shows the thresholded difference between the four-frame temporal median and the stabilized
instance of that frame. Finally, Figure 9 shows the stabilized frame superimposed on the

output of the velocity-tuned filters integrated over four frames.

Figure 8: Thresholded difference between temporal median and stabilized frame.
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Figure 9: Stabilized frame with superimposed moving object regions.

2.2 University of Rochester

(Randal Nelson, Rajesh P.N. Rao)
Work at the University of Rochester addressed the RSTA goal of detecting and track-

ing independently moving objects from a moving platform. The detection of independently
moving objects is a critical task for RSTA subsystems. Because objects that move inde-
pendently represent possible threats, it is important to flag them as rapidly as possible and
then track them so that identification systems can be brought to bear on them. We have
been engaged in a project whose goal is to design, implement, and test a general framework
for utilizing visual motion for the detection and recognition of events and objects. Overall,
we have been developing a three-step process for motion recognition that includes detection,
tracking, and recognition phases. Of these steps, the detection and tracking components
are of most immediate interest to the RSTA demos, and we have been engaged in porting
previously developed algorithms for these aspects of the problem to hardware on the NIST
vehicle, and evaluating the algorithms under various field conditions. The hardware and
mechanics on the NIST vehicle are consistent with those of the current RSTA vehicles, and

thus provide a valid testbed relative to RSTA demo goals.

The fast detection of potentially significant motion events is based on identifying viola-
tions of qualitative rigid-world constraints. This provides a uniformly applicable strategy
by which small regions of the scene can be selected for more thorough inspection. - In pre-
vious work, we produced real-time algorithms for detecting independently moving objects

from a moving platform [10]. These techniques are more general than those based on affine
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stabilization of the visual field, and can function in situations containing substantial motion
parallax at different depths, and skewed, non-planar radial flow (such as that produced in
the near field during locomotion through hilly terrain), which cause problems for the affine
methods. They can thus serve to augment affine stabilization algorithms, which have pre-
viously demonstrated their value in regimes where they are valid. We have ported these
algorithms to a platform consistent with the hardware on the RSTA vehicles, and have eval-
uated their performance, both in isolation and in combination with low-level stabilization

algorithms developed at Maryland.

The tracking step involves stabilization of the area of interest through active visual pro-
cesses such as fixation and tracking to place the motion of interest in a canonical form that
facilitates the final recognition procedure. The techniques of most immediate interest for
RSTA involve the tracking of independently moving rigid objects. We have developed real-
time algorithms for instantiating and maintaining hypotheses about the positions, extents,
and motions of such objects on the basis of the output from the independent motion detec-
tion system. We have also developed techniques for accomplishing this for objects that move
in a complex manner, such as people or animals [13].

The identification step locates regions of interest via a more detailed analysis of motion.
We have developed techniques based on temporal tezture analysis, where we extract statistical
spatial and temporal features from approximations to the motion field and use techniques
analogous to those developed for gray-scale texture analysis to classify regional activities.
Some results in this area are described in [11]. In a second approach, which we term activity
recognition, we use the spatial and temporal arrangement of motion features in conjunction
with simple geometric image analysis to identify complexly moving objects such as machinery
and locomoting people and animals [14]. The remainder of this section concentrates on the
motion detection processes.

Detection of moving objects is of critical importance to biological and robotic systems,
both because such objects are frequently of primary interest to the system, and because deal-
ing with them involves hard real-time constraints—the world won’t wait while you think. A
method of detecting independent motion, or motion having certain other qualitative char-
acteristics such as periodicity, is thus valuable as a method for directing more sophisticated
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(and costly) processing to areas where it can be most e{féctively utilized.

In previous work, we developed methods for detecting three qualitative types of motion.
The first technique, which we term constraint ray filtering, provides a robust method
of detecting independently moving objects from a moving platform when information is
available about the platform motion [10]. The method is based on the observation that the
projected motion at any point on the image sphere is constrained to lie on a half line (ray) in
local velocity space whose parameters depend only on the observer’s motion and the location
of the image point. The second method, termed animate motion detection, allows rapid
detection of animate objects with no information about the movement of the platform [10].
It is based on the observation that animate moving objects typically maneuver, that is, they
or their component parts follow trajectories for which the projected velocity changes rapidly
compared to the velocity change due to self-motion. The third method allows detection
and tracking of objects whose motion has a periodic component, such as walking or running
animals, oscillating machinery, etc. [13]. It is based on a Fourier transform technique.

These techniques can be used to isolate motion for identification by later recognition
processes. The responses of the different qualitative detectors yield an indication of the sort
of recognition process that should be assigned to the movement of interest. For example,
detection of local, highly periodic movement would suggest the use of a phase-based struc-
tural classifier, while a distributed, non-periodic motion would suggest the use of temporal
texture techniques.

The first two techniques were originally implemented as real-time systems on Datacube
series 10 hardware, and demonstrated in a laboratory setting. Of these, the first, constraint
ray filtering, is of the most immediate interest to the RSTA goal of detecting moving vehicles.
We have ported this algorithm to hardware on the NIST vehicle, which is compatible with the
hardware on the Martin Denver demo vehicles, and initiated the evaluation of the algorithm
using outdoor driving sequences acquired from both the NIST vehicle and other vehicles.

Representative results of the moving object detection algorithm are illustrated in Fig-
ures 10 a—b. Figure 10a shows a frame in a video sequence acquired from a forward moving
mobile platform. The independently moving objects are the cars moving left to right near
the horizon. Figure 10b shows the superposition of the pixels detected by the independent
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motion detector onto the video frame. These pixels lie on the car moving across the image.

Input frame Overlayed image

Figure 10: (a) Original image. (b) Independently moving pixels overlaid on (a).

Theoretical analysis of the algorithm indicates that, although the underlying technique
is capable of detecting independent motion in an arbitrary environment under arbitrary
motion, the instantiation of the algorithm on the Maxvideo hardware has certain limitations.
In particular, the choice of a first-order gradient-based flow estimation technique is dictated
by the operations that the Maxvideo performs efficiently (namely, convolution), and this
limits the accuracy of the motion field estimation. Further analysis indicates that when the
magnitude of the motion due to vehicle movement exceeds the magnitude of the independent
motion by more than a factor of two, detection is unreliable. We can recognize this situation

and avoid false positives, but genuine independent motion may then go undetected.

The theoretical performance is borne out by field tests. When driving on roads, or slowly
on relatively smooth terrain, the algorithm detected other moving vehicles in a variety of
situations. However, at high velocity, and over rough off-road terrain, the detection limit is
frequently exceeded, and independently moving objects are missed. Further analysis revealed
that this effect is primarily due to rapidly changing vehicle pitch, with smaller effects from

roll and yaw.

Two approaches can be used to resolve this situation. The first is to use a more accurate
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motion estimation algorithm. However, this is probably not practical in real time using
the existing hardware, though we have explored the use of a multi-resolution gradient-based
algorithm. (Advances in hardware may change this picture for the next generation of vehicles,
but for the moment we are limited to the current Maxvideo system). The second approach
notes that the dominant source of large motions that swamp the detection algorithm is
vehicle rotation, which is removable by stabilization techniques of a sort that have already

been demonstrated.

We have instantiated the second approach, using several stabilization algorithms devel-
oped at the University of Maryland as pre-processors to the motion detection system. The
different algorithms were compared, and the best of them selected for our demonstration.
We have also developed a predictive tracker that will use the (pixel map) output of the inde-
pendent motion detection system to circumscribe and track potential target objects. These
regions of interest will ultimately serve as inputs to the next phase of the system where

recognition and higher-level planning are performed.

2.3 University of Pennsylvania

(Ruzena Bajcsy, Ulf Cahn von Seelen)

The University of Pennsylvania’s research was concerned with camera control for tracking
acquired targets. The controlled axes include mechanical degrees of freedom (pan, tilt) as
well as an optical degree (zoom). The hardware platform consists of a TRC BiSight binocular
camera platform controlled by a PMAC-VME motion controller that is connected to a Sun
workstation via shared memory.

While object tracking by panning and tilting a camera is well known, the use of zoom
in tracking is largely unexplored. For RSTA on the Move we want to maximize the spatial
resolution of the tracked object while maintaining acquisition. This involves optimizing the
tradeoff between spatial resolution and tracking performance. The closer the camera zooms
in on the target, the faster the target moves in the image, and the harder it becomes to

maintain acquisition of it.

To our knowledge, there exist only a few publications that deal with the control of zoom
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for tracking. In [7] the zoom is used to achieve a desired object image size. A fuzzy controller
combines estimates of the diagonal extent of the object, the variance of the object velocity,
and the confidence of the shape estimate to compute a suitable focal length. The influence
of the velocity variance ensures that the camera does not zoom in too closely if an object’s

motion varies greatly, in order to safely maintain acquisition.

In [6] the authors use a robot arm and camera zoom to achieve a desired image feature
configuration. The focus of the work is on integrating the zoom into the control as a redun-
dant mechanical degree of freedom, as the authors assume that the image Jacobian and thus
the 3D positions of the image features in the world are known. This assumption abstracts
from the main problem of using zoom in tracking, namely finding an image-based measure
on which to servo the focal length.

In the PennEyes system [8] we have used various image-based measures to maintain the
apparent size of a target in an image. In the current version we use cross-correlation to
identify the target. This approach is more general, but it does not provide a ready estimate
of the apparent target size. We work with the object distance instead, which we estimate
by triangulation from the two camera views. Using our calibration of the zoom lens, we can
compute a new focal length when the target distance changes so that the image size of the
target remains constant. Figure 11 shows a typical run of the system in which the focal
length is increased so that it compensates for the target motion away from the camera head.

With the expertise gained from zooming for size constancy, we can approach the problem
of zooming for scale change. Changing scale poses increased demands on target identifica-
tion and localization because commonly used approaches such as cross-correlation are not
scale-invariant. Alternatives include feature-based tracking (e.g. [17]) or the use of adaptive

correlation templates (e.g. [12]).

2.4 National Institute of Standards and Technology

(Martin Herman, David Coombs, Sandor Szabo, Tsai-Hong Hong)

NIST was responsible for developing the vision processing platform, assisting in integrat-

ing University software onto the platform, and running the platform on vehicles at the NIST
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Figure 11: Focal length responding to changing target distance.

facility. In addition, NIST collected video data using the NIST HMMWYV, and worked on
target tracking and gaze control software. NIST completed development of the platform and
worked with the Universities to demonstrate two components of RSTA on the Move: image

stabilization and independent motion detection.

The NIST vision processing platform is based on industry-standard components which
allow us to integrate, test and distribute results with minimal amounts of effort. For ex-
ample, approximately one hour was required to initially install and run software from each
University. This allows us to spend a considerably greater portion of our time in analyzing
and improving system performance. The platform, designed for mobile applications, was
easily shipped, set up and demonstrated at ARPA’s UGV Demo C in Denver in July 1995.
Since then we have completed the power conversion of the system so that we can now run
from vehicle DC power sources as well as conventional AC sources. We are close to upgrad-
ing our computing system to three processors aéld to Solaris 2.4 which will allow us to take
full advantage of symmetric multiprocessing and real-time scheduling. Our design, integrat-
ing the RSTA software components and taking full advantage of multiple general purpose

processors, and multiple specialized image processors is almost complete. By early Spring

of 1996 we were able to perform experiments on the NIST HMMWYV on a regular basis.
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Because of our close involvement with the ARPA Demo II program and the Army Research
Laboratory, we feel that the results of our effort can be readily integrated into future DoD
mobile robot applications.

The NIST vision processing system, designed for RSTA on the Move applications, is
capable of performing sophisticated experiments in mobile vehicle applications. The system
consists of a TRC UniSight/BiSight camera head (pan/tilt/vergence), a Datacube MV200
image processor for low level image processing (acquisition, filtering, overlays, etc.), and a
suite of fast SPARC processors (for motion analysis, tracking, etc.). Both the image stabi-
lization algorithm from the University of Maryland and the independent motion detection
algorithm from the University of Rochester rely on image processing taking place in both
the specialized Datacube environment and the general purpose SPARC environment. The
University of Pennsylvania tracking software relies on the specialized motion controller for
the camera head (a Delta Tau PMAC motion controller board) and the SPARC environment.

The system components of the vision processing platform consist of a VME-based card
cage housing all the processor boards, a two gigabyte ruggedized hard disk, and electronics for
the cameras and the TRC camera head. The VME provides power and fast communications
between a Themis SPARC 10MP processor board, the Datacube MV200 image processor
board, and the Delta Tau PMAC motion controller board.

The Themis board is outfitted with an 80 MHz and two 90 MHz HyperSparc processors.
We dedicate one processor to image stabilization, one to independent motion detection, and
one to tracking. The processors are run in pipeline mode with the results from one stage
being fed to the next stage. Additional parallelization within stages could be added to reduce
the overall latency. By changing from Solaris 1.1 to Solaris 2.4, we can take advantage of
the multithreading libraries and the real-time scheduling facilities. Changing to a complete
Solaris system also allows us to migrate away from having separate operating systems for
development and real-time applications, thus further simplifying integration. All of the code
is written in C/C++ and makes use of the GNU Free Software Foundation environment.
We have installed and tested software from the University of Rochester and the University
of Maryland under this environment without any problems.

The Datacube MV200 is practically the industry de-facto standard for real-time vision
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processing. We have installed a complete programming environment for the MV200: Im-
ageflow, Advanced Imaging Tools, WitFlow, and Veil. We have also installed a miniwarper.

Both the University of Rochester and the University of Maryland algorithms require the

MV200, but we can pipeline the algorithms using two MV200 boards.

Table 2: Detection results of three stabilization algorithms.

Algorithm | Threshold | % targets | # frames to | Avg. false % targets
detected | acq. target | alarms/frame | segmented
Projection 17 0 NA NA NA
FTA 1 12 0 NA NA - NA
FTA 2 12 100 7 1 67

The Delta Tau PMAC motion controller board is used for control of the TRC head.
NIST has experience in this area, having built a head (TRICLOPS) in the past, and we can
incorporate previously developed head control software into the RSTA application. We have
received software from the University of Pennsylvania for controlling the head at a low level

and have also developed our own software for computing quintic-based smooth trajectories.

The NIST system is completely self-contained. Each of the components is designed for
modularity, having its own dedicated power conditioner to run off DC power sources. Suffi-
cient power exists to run a fully configured four-processor SPARC 10MP, three MV200’s, the
motion controller board, and an additional I/O processor designed for a potential vestibular
sensor system. All the components are housed in a sealed, ruggedized enclosure designed for
outdoor vehicles. NIST, with the support of the Army Research Laboratory, also maintains

a fully robotic HMMWYV which enables us to perform experiments on a regular basis.

Data Collection. NIST has collected over six hours of videotape from color CCD
cameras rigidly mounted on the HMMWYV, driving at up to 40 kph on- and off-road at
the NIST site in Gaithersburg, MD between December 1993 and June 1995. The terrain
includes campus roads, fields and woods. Civilian vehicles can be seen driving on the NIST
grounds and on the surrounding roads (including highway I-270) at ranges up to 2000 m.
Pedestrians and deer are also visible on occasion. The cameras are rigidly mounted on the

vehicle in forward-looking and oblique-looking (60 degrees off heading) orientations. The
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lens focal lengths used range from 5 mm to 75 mm. No stabilization was used (neither
mechanical stabilization of the cameras nor digital stabilization of the video) and image

jitter is particularly noticeable with longer focal-length lenses.

3 Supporting Basic Research

In addition to the integration activities outlined in the previous section, each of the consor-
tium members also pursued a program of basic research on enabling technologies for RSTA

on the Move. In this section we provide brief descriptions of some of these research projects.

3.1 Performance Characterization of Image Stabilization Algorithms—University

of Maryland

We have carried out a comparative study of image stabilization algorithms in the context
of an automatic target tracking system. This study was conducted jointly with the Army
Research Laboratory (ARL). The goal is to perform target acquisition through a process of
background suppression and motion estimation. In order to accomplish this it is important
that the input sequence be stabilized so that image motion due to camera motion as the

camera is panned, or as the camera moves through the scene, is compensated for.
Three stabilization algorithms were compared with respect to target false alarm and false
dismissal rates, time to acquisition of targets, and a gross measure of the accuracy of target

segmentation.

o The first algorithm was developed at ARL to compensate for wind loading on an un-
manned robotic platform. It is a simple algorithm that can only estimate integer image

translations, and operates on normalized row and column projections of consecutive

frames in the video sequence.

e The second algorithm was developed at the University of Maryland; it is a multireso-

lution version of the algorithm described in Section 2 of this report.

e The third algorithm was a generalization of the second one; it uses longer image se-

quences for motion estimation.
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In spite of the fact that the stabilized image sequences obtained from the three algorithms
were perceptually almost indistinguishable, there were dramatic differences in performance
between the first two algorithms and the third. The first two algorithms had unacceptably
high false dismissal and false alarm rates on the tested image sequences. On the other hand,
when the target tracker was integrated with the third algorithm, it achieved a 0% false
dismissal rate and a 1% false alarm rate on real IR sequences. Details of this study are
reported in [1].

Figure 12 shows a typical image from one of the real FLIR sequences employed in the
experiments. The target, near the top of the image, is outlined in a box. Table 2 compares
the detection results of the three stabilization algorithms on one of the FLIR sequences.
Again, even though there is little perceptual difference between the stabilized sequences
produced by the three algorithms, the impact of the small differences on target acquisition

and false alarm detection rates were quite significant.

Figure 12: Typical image from a real FLIR sequence.

3.2 3D Model-Based Image Stabilization—University of Maryland

We have studied the use of combined visual cues and dynamic models for the stabilization
of calibrated or uncalibrated image sequences [19].
Parameters relevant to image warping are estimated by combining information from

different tracked tokens, namely points and horizon lines. These parameters are simply the
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camera rotational velocity if intrinsic camera parameters are available, or the projectivity
coefficients, in the uncalibrated case. Image plane displacements of distant feature points
may unambiguously characterize rotational motion. However, such points are sometimes
difficult to detect and track, due to the absence of sufficient intensity gradient information.
Horizon lines, when present, on the other hand, constitute very strong visual cues, requiring
relatively simple operations for their tracking. These tokens are therefore both used in our
stabilization scheme.

We have investigated how to use temporal information in a sequence to facilitate the
estimation of parameters of interest. Image stabilization is a process closely related but not
equivalent to image registration. Registration techniques can be extended for stabilization
purposes. Image stabilization is inherently different in that it allows the use of dynamical
information over long temporal windows. In unmanned ground vehicle application, cameras
are mounted rigidly on the platform. The rotation of the vehicle arises from the rotational
movement of the vehicle. It is therefore possible to employ a kinetic law which captures
the rotation of the platform to model the temporal behavior of the parameters of interest.
However, with the aid of visual cues, simple kinematic laws become feasible. We therefore

use a kinematic law to model the temporal behavior of relevant parameters.

Specifically, for calibrated sequences, since the intrinsic parameters of the camera are
known, the perspective projection model which describes the relationship between 3D scenes
and their 2D projections can be used to characterize the projection of both distant points
and horizon lines. After the points and horizon lines are tracked over the sequence, they
can be used along with a kinematic law to estimate the rotational parameters. Based on the

estimated parameters, a stabilized sequence is generated.

For uncalibrated sequences, to integrate distant points and horizon lines, a different
description of the movement of horizon lines is employed. This leads to the estimation
of eight projective coefficients, in order to stabilize the uncalibrated sequence. However,
the estimates of these projective coefficients are very sensitive to the tracking of points
and lines. On the other hand, the intrinsic parameters are often approximately known.
Instead of estimating the eight projective coefficients, our uncalibrated stabilization scheme
is then similar to the calibrated scheme and concentrates on estimating the three rotational
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Figure 13: (a) A sample image from a sequence, (b) an image with horizon line detected,
(c) an image with point trajectories, and (d) a plot showing the estimated 3D rotational
parameters

parameters while assuming the approximate intrinsic parameters.

Both schemes have been tested on real sequences with good results. The results of this
research are illustrated in Figures 13(a~d). Figure 13a shows a sample image from an outdoor
sequence. Figure 13b is the same image with the horizon line superimposed. Figure 13c shows
the point trajectories for features in that sequence and Figure 13d is a plot of the estimated

3D rotational parameters.

3.3 Perception of the UGV’s Environment—University of Maryland

Our work on RSTA on the Move has concentrated on the interplay between the recovery
of three-dimensional motion information and the recovery of descriptions of the immediate
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environment of the UGV. Regarding the perception of 3D motion we have implemented a
set of techniques that recognizes a collection of global patterns of robust spatiotemporal
measurements. The localization of these patterns, which are independent of the structure
of the scene in view, encodes the underlying 3D motion parameters, enabling stabilization
through the interpolation of the UGV’s intended motion in the temporal evolution of the
measured motion. Figure 14 shows experiments using the approach developed in [4] with
real data collected from the vehicle.

A recent technical development related to the perception of the UGV’s environment is
the concept of iso-distortion surfaces, a framework for studying the relationship between
the computation of 3D motion and depth from a sequence of images [3]. The underlying
conceptual theme is that motion errors (e.g., errors between retinal motion and perceived 3D
motion) affect depth estimates systematically. The understanding of the geometry of this
distortion of depth is essential for understanding the interplay between 3D motion and shape
processing and thus for interpreting visual motion. The introduced framework characterizes
this relationship via a family of iso-distortion contours, which describes the loci over which
depths are distorted by the same amounts. Figure 15 shows an example of the iso-distortion
contours that result from intersecting the iso-distortion surfaces with the Zz-plane.

The tool of iso-distortion surfaces allows us to study the very practical problem of calcu-
lating the precision of an inertial system that is sufficient for obtaining unbiased estimates of
the vehicle’s heading direction, using algorithms that combine inertial and visual measure-

ments. The process is explained in Figure 16.

3.4 Fast, Filter-Based, Object Location and Identification—

University of Rochester

We have developed a visual location and identification system [16] based on efficiently com-
putable iconic representations. The system uses two primary visual routines, one for iden-
tifying the visual image near the fovea (object identification), and another for locating a
stored prototype on the retina (object location). The iconic representations are based on

high-dimensional feature vectors obtained from the responses of an ensemble of steerable
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(1)

Figure 14: A camera mounted on the captured a sequence of images as the vehicle moved
along rough terrain in the countryside, thus undergoing continuously changing rigid motion.
(a) shows one frame of the sequence with the normal flow field overlaid. (b), (d) and (f)
show the positive (light color) and negative (dark color) vectors of the longitudinal patterns
corresponding to the z-, y- and z-axes (see [4]). (c), (e) and (g) show the corresponding
fitted patterns. (h) shows, superimposed on the image, the boundaries of the patterns whose
intersections provide the FOE and the AOR (the point where the rotation axis pierces the
image plane). (i) Measurements are not everywhere available (strong intensity gradients are
sparse), but a set of patterns can still be fitted, resulting in two bounded areas as locations
for the FOE and the AOR.

Gaussian derivative spatial filters at a number of orientations and scales. Such feature vec-
tors serve as effective photometric descriptions of the local intensity variations present in the
image region about a scene/object point; in addition, they can be made rotation and scale
invariant [16]. The iconic feature vectors are stored in two separate memories. One memory

is indexed by image coordinates while the other is indexed by object coordinates. Object
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Figure 15: Iso-distortion contours resulting from intersecting the iso-distortion surfaces with the
Zz-plane (the plane defined by the optical axis and the horizontal axis of the camera). The
horizontal component zq of the actual Focus of Expansion is zo = 50. Assuming that the error in
estimating z¢ is 2o, = —50 and the error in estimating the rotation around the y-axis is Be ~ 0.001,
Figures 15a and 15b show iso-distortion contours for two different values of the FOV. The value
next to each contour denotes the amount of multiplicative distortion (1.0 means no distortion).

location matches a localized set of model features with image features at all possible retinal
locations. Object identification matches a foveal set of image features with all possible model
features.

We describe here in more detail the routine for object location; details regarding the
identification routine, which employs Kalman Filter theory and visual learning, can be found
in [15]. The location routine crucially depends on the fact that only a single model object is
being matched to other objects in an image at any instant. Let us denote this model that is

to be located in the current image as
M={"m=1,...,Mmax}- (20)

where r™ are the object’s filter response vectors extracted from different spatial locations.

The location algorithm in its most general form proceedvs as follows:

1. For each response vector r™ representing some model point m, create a Saliency Image
S, defined by
Sm(2,y) = [It(z,y) — ™| (21)
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Figure 16: The effectiveness of a relatively inexpensive, not highly accurate inertial sensor depends
on the distribution of depths in the scene in view. The analysis using iso-distortion contours is
based on whether “negative” depth values arise, and considers as a criterion for the estimation
of the FOE the point that gives rise to a minimum number of non-positive depth measurements.
The level contours in (b), (¢), and (d) show the variation in the number of negative depths as the
FOE estimates move away from the true FOE (indicated by the cross). The best FOE estimate
is associated with the “bottom” of the contours (minimum number of negative depths). The axes
of these contour plots represent the error of the FOE in degrees; they are not plotted at the same
scale as the image in (a). FOE = 30°; 8. = 0.04°/s (error in rotation around the y-axis); (Z/W )miq
adjusted by changing W. The analysis suggests that an inertial sensor with an accuracy of 0.04°/s
may be problematic in outdoor scenes but should be very successful in indoor scenes.
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2. Find the best match point in the image for each m using the following Winner-Take-All

rule:

(xbm’ ybm) = a'rgmin(x,y) {S’m ('7;7 y)} (22)

3. Construct a binary image B:

1if (z,y) € {(Toms Yo )} (23)

B(z,y) = :
0 otherwise

where m = 1,..., Mmax-

4. Output the location of the object in the current image as
(xbayb) = a’rgma’x(:c,y) {S(.’L‘, y) * B("Ea y)} (24)

where B is an appropriate blurring function whose size can usually be estimated in an

active vision environment.

The location algorithm operates at close to real-time rates in an active vision system
consisting of the University of Rochester binocular head with two movable color CCD cameras
that provide input to a Datacube MaxVideo™ MV200 pipeline image-processing system.
Given a live input image (of size 512 x 480) from the camera, the MV200 executes nine
convolutions using nine different 8 x 8 discrete Gaussian derivative filter kernels on 2 low-
pass filtered five-level pyramid of the image to obtain the response vectors for all points in the
current image; these vectors are stored in a “memory surface” . During the memorization
phase, filter responses are extracted for each of the sparse set of points located within the
given object. During the location phase, a model response vector is loaded into the 8 x 8
convolution kernel and convolved with the memory surface S containing the response vectors
for each point of the input image; the closest vectors can be selected by simply thresholding

the results of the convolution at individual thresholds to obtain candidate match points.

Figure 17 shows an example of the performance of the location routine in a realistic scene.
Here we demonstrate the algorithm’s ability to find a model object (in this case, the stuffed
doll) in the presence of object motion, clutter, and perspective distortion; ‘4’ denotes the

best matching location found by the algorithm.
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Figure 17: Example of locating a model object (stuffed doll) under conditions of motion,
clutter, and perspective.

3.5 Active Intelligent Observers—University of Pennsylvania

Current active vision systems address two primary questions: how to select interesting parts
of the scene to look at and how to maintain acquisitioﬁ of the selected objects. We are
interested in building an active intelligent observer on top of a reflexive gaze control system.
Specifically, we will use high-level knowledge to direct the actions of an active vision system

using feedback from low-level gaze control mechanisms.

Our approach comprises three phases. In the teaching phase, the active intelligent ob-
server acquires a series of views of a reference object and integrates them into a structural
model of the object. In the acquisition phase, the observer searches for the desired object
in the scene and establishes the correct image size by moving and zooming. In the guidance
phase, the observer dynamically constructs a gaze control path that leads to the optimal
aspect for the current task. The structural model of the object allows the observer to de-
termine the location of the optimal aspect in the view sphere and to generate intermediate
views that guide the observer along the gaze control path. In robotic applications, the ma-
nipulated object must frequently be examined as to its identity and orientation. The active
intelligent observer uses the structural model to determine the object’s orientation and to

move around it to view specific features.

Low-level image measures for gaze control are notoriously sensitive to changes in scale,
orientation, and viewing aspect. However, if a simple template is augmented with high-level

structural information, new views can be synthesized to guide the observer’s gaze between
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known views. Conversely, the observer can infer the pose of an object from the current
view by comparing it to the stored knowledge. The basic idea of this approach is to add

a higher level of feedback to gaze control and close the perception-action loop around the

visual servoing task.
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